8,995 research outputs found
Ge growth on ion-irradiated Si self-affine fractal surfaces
We have carried out scanning tunneling microscopy experiments under ultrahigh
vacuum condition to study the morphology of ultrathin Ge films eposited on
pristine Si(100) and ion-irradiated Si(100) self-affine fractal surfaces. The
pristine and the ion-irradiated Si(100) surface have roughness exponents of
alpha=0.19+/-0.05 and alpha=0.82+/-0.04 respectively. These measurements were
carried out on two halves of the same sample where only one half was
ion-irradiated. Following deposition of a thin film of Ge (~6 A) the roughness
exponents change to 0.11+/-0.04 and 0.99+/-0.06, respectively. Upon Ge
deposition, while the roughness increases by more than an order of magnitude on
the pristine surface, a smoothing is observed for the ion-irradiated surface.
For the ion-irradiated surface the correlation length xi increases from 32 nm
to 137 nm upon Ge deposition. Ge grows on Si surfaces in the Stranski-Krastanov
or layer-plus-island mode where islands grow on a wetting layer of about three
atomic layers. On the pristine surface the islands are predominantly of square
or rectangular shape, while on the ion-irradiated surface the islands are
nearly diamond shaped. Changes of adsorption behaviour of deposited atoms
depending on the roughness exponent (or the fractal dimension) of the substrate
surface are discussed.Comment: 5 pages, 2 figures and 1 tabl
A homomorphism theorem and a Trotter product formula for quantum stochastic flows with unbounded coefficients
We give a new method for proving the homomorphic property of a quantum
stochastic ow satisfying a quantum stochastic differential equation with
unbounded coefficients, under some further hypotheses. As an application, we
prove a Trotter product formula for quantum stochastic ows and obtain quantum
stochastic dilations of a class of quantum dynamical semigroups generalizing
results of [5
A Landau fluid model for warm collisionless plasmas
A Landau fluid model for a collisionless electron-proton magnetized plasma,
that accurately reproduces the dispersion relation and the Landau damping rate
of all the magnetohydrodynamic waves, is presented. It is obtained by an
accurate closure of the hydrodynamic hierarchy at the level of the fourth order
moments, based on linear kinetic theory. It retains non-gyrotropic corrections
to the pressure and heat flux tensors up to the second order in the ratio
between the considered frequencies and the ion cyclotron frequency.Comment: to appear in Phys. Plasma
Snow cover, snowmelt and runoff in the Himalayan River basins
Not withstanding the seasonal vagaries of both rainfall amount and snowcover extent, the Himalayan rivers retain their basic perennial character. However, it is the component of snowmelt yield that accounts for some 60 to 70 percent of the total annual flow volumes from Hamilayan watersheds. On this large hydropotential predominantly depends the temporal performance of hydropower generation and major irrigation projects. The large scale effects of Himalayan snowcover on the hydrologic responses of a few selected catchments in western Himalayas was studied. The antecedent effects of snowcover area on long and short term meltwater yields can best be analyzed by developing appropriate hydrologic models forecasting the pattern of snowmelt as a function of variations in snowcover area. It is hoped that these models would be of practical value in the management of water resources. The predictability of meltwater for the entire snowmelt season was studied, as was the concurrent flow variation in adjacent watersheds, and their hydrologic significance. And the applicability of the Snowmelt-Runoff Model for real time forecast of daily discharges during the major part of the snowmelt season is examined
Resolution of two apparent paradoxes concerning quantum oscillations in underdoped high- superconductors
Recent quantum oscillation experiments in underdoped high temperature
superconductors seem to imply two paradoxes. The first paradox concerns the
apparent non-existence of the signature of the electron pockets in angle
resolved photoemission spectroscopy (ARPES). The second paradox is a clear
signature of a small electron pocket in quantum oscillation experiments, but no
evidence as yet of the corresponding hole pockets of approximately double the
frequency of the electron pocket. This hole pockets should be present if the
Fermi surface reconstruction is due to a commensurate density wave, assuming
that Luttinger sum rule relating the area of the pockets and the total number
of charge carriers holds. Here we provide possible resolutions of these
apparent paradoxes from the commensurate -density wave theory. To address
the first paradox we have computed the ARPES spectral function subject to
correlated disorder, natural to a class of experiments relevant to the
materials studied in quantum oscillations. The intensity of the spectral
function is significantly reduced for the electron pockets for an intermediate
range of disorder correlation length, and typically less than half the hole
pocket is visible, mimicking Fermi arcs. Next we show from an exact transfer
matrix calculation of the Shubnikov-de Haas oscillation that the usual disorder
affects the electron pocket more significantly than the hole pocket. However,
when, in addition, the scattering from vortices in the mixed state is included,
it wipes out the frequency corresponding to the hole pocket. Thus, if we are
correct, it will be necessary to do measurements at higher magnetic fields and
even higher quality samples to recover the hole pocket frequency.Comment: Accepted version, Phys. Rev. B, brief clarifying comments and updated
reference
- …
