5,922 research outputs found
Increasing evidence for hemispherical power asymmetry in the five-year WMAP data
(Abridged)Motivated by the recent results of Hansen et al. (2008) concerning
a noticeable hemispherical power asymmetry in the WMAP data on small angular
scales, we revisit the dipole modulated signal model introduced by Gordon et
al. (2005). This model assumes that the true CMB signal consists of a Gaussian
isotropic random field modulated by a dipole, and is characterized by an
overall modulation amplitude, A, and a preferred direction, p. Previous
analyses of this model has been restricted to very low resolution due to
computational cost. In this paper, we double the angular resolution, and
compute the full corresponding posterior distribution for the 5-year WMAP data.
The results from our analysis are the following: The best-fit modulation
amplitude for l <= 64 and the ILC data with the WMAP KQ85 sky cut is A=0.072
+/- 0.022, non-zero at 3.3sigma, and the preferred direction points toward
Galactic coordinates (l,b) = (224 degree, -22 degree) +/- 24 degree. The
corresponding results for l <~ 40 from earlier analyses was A = 0.11 +/- 0.04
and (l,b) = (225 degree,-27 degree). The statistical significance of a non-zero
amplitude thus increases from 2.8sigma to 3.3sigma when increasing l_max from
40 to 64, and all results are consistent to within 1sigma. Similarly, the
Bayesian log-evidence difference with respect to the isotropic model increases
from Delta ln E = 1.8 to Delta ln E = 2.6, ranking as "strong evidence" on the
Jeffreys' scale. The raw best-fit log-likelihood difference increases from
Delta ln L = 6.1 to Delta ln L = 7.3. Similar, and often slightly stronger,
results are found for other data combinations. Thus, we find that the evidence
for a dipole power distribution in the WMAP data increases with l in the 5-year
WMAP data set, in agreement with the reports of Hansen et al. (2008).Comment: 6 pages, 2 figures; added references and minor comments. Accepted for
publication in Ap
Foreground separation using a flexible maximum-entropy algorithm: an application to COBE data
A flexible maximum-entropy component separation algorithm is presented that
accommodates anisotropic noise, incomplete sky-coverage and uncertainties in
the spectral parameters of foregrounds. The capabilities of the method are
determined by first applying it to simulated spherical microwave data sets
emulating the COBE-DMR, COBE-DIRBE and Haslam surveys. Using these simulations
we find that is very difficult to determine unambiguously the spectral
parameters of the galactic components for this data set due to their high level
of noise. Nevertheless, we show that is possible to find a robust CMB
reconstruction, especially at the high galactic latitude. The method is then
applied to these real data sets to obtain reconstructions of the CMB component
and galactic foreground emission over the whole sky. The best reconstructions
are found for values of the spectral parameters: T_d=19 K, alpha_d=2,
beta_ff=-0.19 and beta_syn=-0.8. The CMB map has been recovered with an
estimated statistical error of \sim 22 muK on an angular scale of 7 degrees
outside the galactic cut whereas the low galactic latitude region presents
contamination from the foreground emissions.Comment: 29 pages, 25 figures, version accepted for publication in MNRAS. One
subsection and 6 figures added. Main results unchange
COBE-DMR-Normalized Dark Energy Cosmogony
Likelihood analyses of the COBE-DMR sky maps are used to determine the
normalization of the inverse-power-law-potential scalar field dark energy
model. Predictions of the DMR-normalized model are compared to various
observations to constrain the allowed range of model parameters. Although the
derived constraints are restrictive, evolving dark energy density scalar field
models remain an observationally-viable alternative to the constant
cosmological constant model.Comment: 26 pages, 10 figures, ApJ accepte
Python I, II, and III CMB Anisotropy Measurement Constraints on Open and Flat-Lambda CDM Cosmogonies
We use Python I, II, and III cosmic microwave background anisotropy data to
constrain cosmogonies. We account for the Python beamwidth and calibration
uncertainties. We consider open and spatially-flat-Lambda cold dark matter
cosmogonies, with nonrelativistic-mass density parameter Omega_0 in the range
0.1--1, baryonic-mass density parameter Omega_B in the range (0.005--0.029)
h^{-2}, and age of the universe t_0 in the range (10--20) Gyr. Marginalizing
over all parameters but Omega_0, the combined Python data favors an open
(spatially-flat-Lambda) model with Omega_0 simeq 0.2 (0.1). At the 2 sigma
confidence level model normalizations deduced from the combined Python data are
mostly consistent with those drawn from the DMR, UCSB South Pole 1994, ARGO,
MAX 4 and 5, White Dish, and SuZIE data sets.Comment: 20 pages, 7 figures, accepted by Ap
The Planck-LFI instrument: analysis of the 1/f noise and implications for the scanning strategy
We study the impact of the 1/f noise on the PLANCK Low Frequency Instrument
(LFI) osbervations (Mandolesi et al 1998) and describe a simple method for
removing striping effects from the maps for a number of different scanning
stategies. A configuration with an angle between telescope optical axis and
spin-axis just less than 90 degrees (namely 85 degress) shows good destriping
efficiency for all receivers in the focal plane, with residual noise
degradation < 1-2 %. In this configuration, the full sky coverage can be
achieved for each channel separately with a 5 degrees spin-axis precession to
maintain a constant solar aspect angle.Comment: submitted to Astronomy and Astrophysics, 12 pages, 15 PostSript
figure
Asymmetries in the CMB anisotropy field
We report on the results from two independent but complementary statistical
analyses of the WMAP first-year data, based on the power spectrum and N-point
correlation functions. We focus on large and intermediate scales (larger than
about 3 degrees) and compare the observed data against Monte Carlo ensembles
with WMAP-like properties. In both analyses, we measure the amplitudes of the
large-scale fluctuations on opposing hemispheres and study the ratio of the two
amplitudes. The power-spectrum analysis shows that this ratio for WMAP, as
measured along the axis of maximum asymmetry, is high at the 95%-99% level
(depending on the particular multipole range included). The axis of maximum
asymmetry of the WMAP data is weakly dependent on the multipole range under
consideration but tends to lie close to the ecliptic axis. In the N-point
correlation function analysis we focus on the northern and southern hemispheres
defined in ecliptic coordinates, and we find that the ratio of the large-scale
fluctuation amplitudes is high at the 98%-99% level. Furthermore, the results
are stable with respect to choice of Galactic cut and also with respect to
frequency band. A similar asymmetry is found in the COBE-DMR map, and the axis
of maximum asymmetry is close to the one found in the WMAP data.Comment: 6 pages, 5 figures; version to appear in ApJ, textual improvements,
added reference
Bayesian analysis of the low-resolution polarized 3-year WMAP sky maps
We apply a previously developed Gibbs sampling framework to the foreground
corrected 3-yr WMAP polarization data and compute the power spectrum and
residual foreground template amplitude posterior distributions. We first
analyze the co-added Q- and V-band data, and compare our results to the
likelihood code published by the WMAP team. We find good agreement, and thus
verify the numerics and data processing steps of both approaches. However, we
also analyze the Q- and V-bands separately, allowing for non-zero EB
cross-correlations and including two individual foreground template amplitudes
tracing synchrotron and dust emission. In these analyses, we find tentative
evidence of systematics: The foreground tracers correlate with each of the Q-
and V-band sky maps individually, although not with the co-added QV map; there
is a noticeable negative EB cross-correlation at l <~ 16 in the V-band map; and
finally, when relaxing the constraints on EB and BB, noticeable differences are
observed between the marginalized band powers in the Q- and V-bands. Further
studies of these features are imperative, given the importance of the low-l EE
spectrum on the optical depth of reionization tau and the spectral index of
scalar perturbations n_s.Comment: 5 pages, 4 figures, submitted to ApJ
- …
