4,853 research outputs found
Recommended from our members
Spatial restriction of alpha4 integrin phosphorylation regulates lamellipodial stability and alpha4beta1-dependent cell migration.
Integrins coordinate spatial signaling events essential for cell polarity and directed migration. Such signals from alpha4 integrins regulate cell migration in development and in leukocyte trafficking. Here, we report that efficient alpha4-mediated migration requires spatial control of alpha4 phosphorylation by protein kinase A, and hence localized inhibition of binding of the signaling adaptor, paxillin, to the integrin. In migrating cells, phosphorylated alpha4 accumulated along the leading edge. Blocking alpha4 phosphorylation by mutagenesis or by inhibition of protein kinase A drastically reduced alpha4-dependent migration and lamellipodial stability. alpha4 phosphorylation blocks paxillin binding in vitro; we now find that paxillin and phospho-alpha4 were in distinct clusters at the leading edge of migrating cells, whereas unphosphorylated alpha4 and paxillin colocalized along the lateral edges of those cells. Furthermore, enforced paxillin association with alpha4 inhibits migration and reduced lamellipodial stability. These results show that topographically specific integrin phosphorylation can control cell migration and polarization by spatial segregation of adaptor protein binding
Superconducting properties of ultrathin Bi2Sr2CaCu2O8+x single crystals
We use Ar-ion milling to thin Bi2212 single crystals down to a few nanometers
or one-to-two (CuO2)2 layers. With decreasing the thickness, superconducting
transition temperature gradually decreases to zero and the in-plane resistivity
increases to large values indicating the existence of a
superconductor-insulator transition in ultrathin Bi2212 single crystals.Comment: 17 pages, 6 figures, to appear in J. Appl. Phys. 98(3) 200
Correlating Pedestrian Flows and Search Engine Queries
An important challenge for ubiquitous computing is the development of
techniques that can characterize a location vis-a-vis the richness and
diversity of urban settings. In this paper we report our work on correlating
urban pedestrian flows with Google search queries. Using longitudinal data we
show pedestrian flows at particular locations can be correlated with the
frequency of Google search terms that are semantically relevant to those
locations. Our approach can identify relevant content, media, and
advertisements for particular locations.Comment: 4 pages, 1 figure, 1 tabl
Cathodoluminescence-based nanoscopic thermometry in a lanthanide-doped phosphor
Crucial to analyze phenomena as varied as plasmonic hot spots and the spread
of cancer in living tissue, nanoscale thermometry is challenging: probes are
usually larger than the sample under study, and contact techniques may alter
the sample temperature itself. Many photostable nanomaterials whose
luminescence is temperature-dependent, such as lanthanide-doped phosphors, have
been shown to be good non-contact thermometric sensors when optically excited.
Using such nanomaterials, in this work we accomplished the key milestone of
enabling far-field thermometry with a spatial resolution that is not
diffraction-limited at readout.
We explore thermal effects on the cathodoluminescence of lanthanide-doped
NaYF nanoparticles. Whereas cathodoluminescence from such lanthanide-doped
nanomaterials has been previously observed, here we use quantitative features
of such emission for the first time towards an application beyond localization.
We demonstrate a thermometry scheme that is based on cathodoluminescence
lifetime changes as a function of temperature that achieves 30 mK
sensitivity in sub-m nanoparticle patches. The scheme is robust against
spurious effects related to electron beam radiation damage and optical
alignment fluctuations.
We foresee the potential of single nanoparticles, of sheets of nanoparticles,
and also of thin films of lanthanide-doped NaYF to yield temperature
information via cathodoluminescence changes when in the vicinity of a sample of
interest; the phosphor may even protect the sample from direct contact to
damaging electron beam radiation. Cathodoluminescence-based thermometry is thus
a valuable novel tool towards temperature monitoring at the nanoscale, with
broad applications including heat dissipation in miniaturized electronics and
biological diagnostics.Comment: Main text: 30 pages + 4 figures; supplementary information: 22 pages
+ 8 figure
Dynamic Exponent of t-J and t-J-W Model
Drude weight of optical conductivity is calculated at zero temperature by
exact diagonalization for the two-dimensional t-J model with the two-particle
term, . For the ordinary t-J model with =0, the scaling of the Drude
weight for small doping concentration is
obtained, which indicates anomalous dynamic exponent =4 of the Mott
transition. When is switched on, the dynamic exponent recovers its
conventional value =2. This corresponds to an incoherent-to-coherent
transition associated with the switching of the two-particle transfer.Comment: LaTeX, JPSJ-style, 4 pages, 5 eps files, to appear in J. Phys. Soc.
Jpn. vol.67, No.6 (1998
Resonant Two-Magnon Raman Scattering in Cuprate Antiferromagnetic Insulators
We present results of low-temperature two-magnon resonance Raman excitation
profile measurements for single layer Sr_2CuO_2Cl_2 and bilayer YBa_2Cu_3O_{6 +
\delta} antiferromagnets over the excitation region from 1.65 to 3.05 eV. These
data reveal composite structure of the two-magnon line shape and strong
nonmonotic dependence of the scattering intensity on excitation energy. We
analyze these data using the triple resonance theory of Chubukov and Frenkel
(Phys. Rev. Lett., 74, 3057 (1995)) and deduce information about magnetic
interaction and band parameters in these materials.Comment: REVTeX, 4 pages + 2 PostScript (compressed) figure
Quantifying trading behavior in financial markets using Google Trends
Crises in financial markets affect humans worldwide. Detailed market data on trading decisions reflect some of the complex human behavior that has led to these crises. We suggest that massive new data sources resulting from human interaction with the Internet may offer a new perspective on the behavior of market participants in periods of large market movements. By analyzing changes in Google query volumes for search terms related to finance, we find patterns that may be interpreted as “early warning signs” of stock market moves. Our results illustrate the potential that combining extensive behavioral data sets offers for a better understanding of collective human behavior
Experiments on Multidimensional Solitons
This article presents an overview of experimental efforts in recent years
related to multidimensional solitons in Bose-Einstein condensates. We discuss
the techniques used to generate and observe multidimensional nonlinear waves in
Bose-Einstein condensates with repulsive interactions. We further summarize
observations of planar soliton fronts undergoing the snake instability, the
formation of vortex rings, and the emergence of hybrid structures.Comment: review paper, to appear as Chapter 5b in "Emergent Nonlinear
Phenomena in Bose-Einstein Condensates: Theory and Experiment," edited by P.
G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-Gonzalez
(Springer-Verlag
- …
