1,144 research outputs found
Using Markov chain Monte Carlo methods for estimating parameters with gravitational radiation data
We present a Bayesian approach to the problem of determining parameters for
coalescing binary systems observed with laser interferometric detectors. By
applying a Markov Chain Monte Carlo (MCMC) algorithm, specifically the Gibbs
sampler, we demonstrate the potential that MCMC techniques may hold for the
computation of posterior distributions of parameters of the binary system that
created the gravity radiation signal. We describe the use of the Gibbs sampler
method, and present examples whereby signals are detected and analyzed from
within noisy data.Comment: 21 pages, 10 figure
HLA-A, -B, -C, -DRB1, DRB3, DRB4, DRB5 and DQB1 polymorphism detected by PCR-SSP in a semi-urban HIV-positive Ugandan population.
PCR-SSP was used to HLA-type a cohort of Ugandan HIV-positive individuals. The results represent a more comprehensive description of HLA in an African population than previously described and are in concordance with data from a general Black population. Substantial differences exist between this population and Caucasoid populations in which immunological responses to HIV have been investigated; this emphasises that the main HLA-restrictive elements for HIV-specific cytotoxic T lymphocytes will most likely be different for each population
Relic gravitational waves in the light of 7-year Wilkinson Microwave Anisotropy Probe data and improved prospects for the Planck mission
The new release of data from Wilkinson Microwave Anisotropy Probe improves
the observational status of relic gravitational waves. The 7-year results
enhance the indications of relic gravitational waves in the existing data and
change to the better the prospects of confident detection of relic
gravitational waves by the currently operating Planck satellite. We apply to
WMAP7 data the same methods of analysis that we used earlier [W. Zhao, D.
Baskaran, and L.P. Grishchuk, Phys. Rev. D 80, 083005 (2009)] with WMAP5 data.
We also revised by the same methods our previous analysis of WMAP3 data. It
follows from the examination of consecutive WMAP data releases that the maximum
likelihood value of the quadrupole ratio , which characterizes the amount of
relic gravitational waves, increases up to , and the interval
separating this value from the point (the hypothesis of no gravitational
waves) increases up to a level. The primordial spectra of density
perturbations and gravitational waves remain blue in the relevant interval of
wavelengths, but the spectral indices increase up to and
. Assuming that the maximum likelihood estimates of the perturbation
parameters that we found from WMAP7 data are the true values of the parameters,
we find that the signal-to-noise ratio for the detection of relic
gravitational waves by the Planck experiment increases up to , even
under pessimistic assumptions with regard to residual foreground contamination
and instrumental noises. We comment on theoretical frameworks that, in the case
of success, will be accepted or decisively rejected by the Planck observations.Comment: 27 pages, 12 (colour) figures. Published in Phys. Rev. D. V.3:
modifications made to reflect the published versio
On analog quantum algorithms for the mixing of Markov chains
The problem of sampling from the stationary distribution of a Markov chain
finds widespread applications in a variety of fields. The time required for a
Markov chain to converge to its stationary distribution is known as the
classical mixing time. In this article, we deal with analog quantum algorithms
for mixing. First, we provide an analog quantum algorithm that given a Markov
chain, allows us to sample from its stationary distribution in a time that
scales as the sum of the square root of the classical mixing time and the
square root of the classical hitting time. Our algorithm makes use of the
framework of interpolated quantum walks and relies on Hamiltonian evolution in
conjunction with von Neumann measurements.
There also exists a different notion for quantum mixing: the problem of
sampling from the limiting distribution of quantum walks, defined in a
time-averaged sense. In this scenario, the quantum mixing time is defined as
the time required to sample from a distribution that is close to this limiting
distribution. Recently we provided an upper bound on the quantum mixing time
for Erd\"os-Renyi random graphs [Phys. Rev. Lett. 124, 050501 (2020)]. Here, we
also extend and expand upon our findings therein. Namely, we provide an
intuitive understanding of the state-of-the-art random matrix theory tools used
to derive our results. In particular, for our analysis we require information
about macroscopic, mesoscopic and microscopic statistics of eigenvalues of
random matrices which we highlight here. Furthermore, we provide numerical
simulations that corroborate our analytical findings and extend this notion of
mixing from simple graphs to any ergodic, reversible, Markov chain.Comment: The section concerning time-averaged mixing (Sec VIII) has been
updated: Now contains numerical plots and an intuitive discussion on the
random matrix theory results used to derive the results of arXiv:2001.0630
Sampling constrained probability distributions using Spherical Augmentation
Statistical models with constrained probability distributions are abundant in
machine learning. Some examples include regression models with norm constraints
(e.g., Lasso), probit, many copula models, and latent Dirichlet allocation
(LDA). Bayesian inference involving probability distributions confined to
constrained domains could be quite challenging for commonly used sampling
algorithms. In this paper, we propose a novel augmentation technique that
handles a wide range of constraints by mapping the constrained domain to a
sphere in the augmented space. By moving freely on the surface of this sphere,
sampling algorithms handle constraints implicitly and generate proposals that
remain within boundaries when mapped back to the original space. Our proposed
method, called {Spherical Augmentation}, provides a mathematically natural and
computationally efficient framework for sampling from constrained probability
distributions. We show the advantages of our method over state-of-the-art
sampling algorithms, such as exact Hamiltonian Monte Carlo, using several
examples including truncated Gaussian distributions, Bayesian Lasso, Bayesian
bridge regression, reconstruction of quantized stationary Gaussian process, and
LDA for topic modeling.Comment: 41 pages, 13 figure
Coherent Bayesian analysis of inspiral signals
We present in this paper a Bayesian parameter estimation method for the
analysis of interferometric gravitational wave observations of an inspiral of
binary compact objects using data recorded simultaneously by a network of
several interferometers at different sites. We consider neutron star or black
hole inspirals that are modeled to 3.5 post-Newtonian (PN) order in phase and
2.5 PN in amplitude. Inference is facilitated using Markov chain Monte Carlo
methods that are adapted in order to efficiently explore the particular
parameter space. Examples are shown to illustrate how and what information
about the different parameters can be derived from the data. This study uses
simulated signals and data with noise characteristics that are assumed to be
defined by the LIGO and Virgo detectors operating at their design
sensitivities. Nine parameters are estimated, including those associated with
the binary system, plus its location on the sky. We explain how this technique
will be part of a detection pipeline for binary systems of compact objects with
masses up to 20 \sunmass, including cases where the ratio of the individual
masses can be extreme.Comment: Accepted for publication in Classical and Quantum Gravity, Special
issue for GWDAW-1
Extracting galactic binary signals from the first round of Mock LISA Data Challenges
We report on the performance of an end-to-end Bayesian analysis pipeline for
detecting and characterizing galactic binary signals in simulated LISA data.
Our principal analysis tool is the Blocked-Annealed Metropolis Hasting (BAM)
algorithm, which has been optimized to search for tens of thousands of
overlapping signals across the LISA band. The BAM algorithm employs Bayesian
model selection to determine the number of resolvable sources, and provides
posterior distribution functions for all the model parameters. The BAM
algorithm performed almost flawlessly on all the Round 1 Mock LISA Data
Challenge data sets, including those with many highly overlapping sources. The
only misses were later traced to a coding error that affected high frequency
sources. In addition to the BAM algorithm we also successfully tested a Genetic
Algorithm (GA), but only on data sets with isolated signals as the GA has yet
to be optimized to handle large numbers of overlapping signals.Comment: 13 pages, 4 figures, submitted to Proceedings of GWDAW-11 (Berlin,
Dec. '06
Bayesian inference on compact binary inspiral gravitational radiation signals in interferometric data
Presented is a description of a Markov chain Monte Carlo (MCMC) parameter
estimation routine for use with interferometric gravitational radiational data
in searches for binary neutron star inspiral signals. Five parameters
associated with the inspiral can be estimated, and summary statistics are
produced. Advanced MCMC methods were implemented, including importance
resampling and prior distributions based on detection probability, in order to
increase the efficiency of the code. An example is presented from an
application using realistic, albeit fictitious, data.Comment: submitted to Classical and Quantum Gravity. 14 pages, 5 figure
Coherent Bayesian inference on compact binary inspirals using a network of interferometric gravitational wave detectors
Presented in this paper is a Markov chain Monte Carlo (MCMC) routine for
conducting coherent parameter estimation for interferometric gravitational wave
observations of an inspiral of binary compact objects using data from multiple
detectors. The MCMC technique uses data from several interferometers and infers
all nine of the parameters (ignoring spin) associated with the binary system,
including the distance to the source, the masses, and the location on the sky.
The Metropolis-algorithm utilises advanced MCMC techniques, such as importance
resampling and parallel tempering. The data is compared with time-domain
inspiral templates that are 2.5 post-Newtonian (PN) in phase and 2.0 PN in
amplitude. Our routine could be implemented as part of an inspiral detection
pipeline for a world wide network of detectors. Examples are given for
simulated signals and data as seen by the LIGO and Virgo detectors operating at
their design sensitivity.Comment: 10 pages, 4 figure
- …
