1,144 research outputs found

    Using Markov chain Monte Carlo methods for estimating parameters with gravitational radiation data

    Get PDF
    We present a Bayesian approach to the problem of determining parameters for coalescing binary systems observed with laser interferometric detectors. By applying a Markov Chain Monte Carlo (MCMC) algorithm, specifically the Gibbs sampler, we demonstrate the potential that MCMC techniques may hold for the computation of posterior distributions of parameters of the binary system that created the gravity radiation signal. We describe the use of the Gibbs sampler method, and present examples whereby signals are detected and analyzed from within noisy data.Comment: 21 pages, 10 figure

    HLA-A, -B, -C, -DRB1, DRB3, DRB4, DRB5 and DQB1 polymorphism detected by PCR-SSP in a semi-urban HIV-positive Ugandan population.

    No full text
    PCR-SSP was used to HLA-type a cohort of Ugandan HIV-positive individuals. The results represent a more comprehensive description of HLA in an African population than previously described and are in concordance with data from a general Black population. Substantial differences exist between this population and Caucasoid populations in which immunological responses to HIV have been investigated; this emphasises that the main HLA-restrictive elements for HIV-specific cytotoxic T lymphocytes will most likely be different for each population

    Relic gravitational waves in the light of 7-year Wilkinson Microwave Anisotropy Probe data and improved prospects for the Planck mission

    Full text link
    The new release of data from Wilkinson Microwave Anisotropy Probe improves the observational status of relic gravitational waves. The 7-year results enhance the indications of relic gravitational waves in the existing data and change to the better the prospects of confident detection of relic gravitational waves by the currently operating Planck satellite. We apply to WMAP7 data the same methods of analysis that we used earlier [W. Zhao, D. Baskaran, and L.P. Grishchuk, Phys. Rev. D 80, 083005 (2009)] with WMAP5 data. We also revised by the same methods our previous analysis of WMAP3 data. It follows from the examination of consecutive WMAP data releases that the maximum likelihood value of the quadrupole ratio RR, which characterizes the amount of relic gravitational waves, increases up to R=0.264R=0.264, and the interval separating this value from the point R=0R=0 (the hypothesis of no gravitational waves) increases up to a 2σ2\sigma level. The primordial spectra of density perturbations and gravitational waves remain blue in the relevant interval of wavelengths, but the spectral indices increase up to ns=1.111n_s =1.111 and nt=0.111n_t=0.111. Assuming that the maximum likelihood estimates of the perturbation parameters that we found from WMAP7 data are the true values of the parameters, we find that the signal-to-noise ratio S/NS/N for the detection of relic gravitational waves by the Planck experiment increases up to S/N=4.04S/N=4.04, even under pessimistic assumptions with regard to residual foreground contamination and instrumental noises. We comment on theoretical frameworks that, in the case of success, will be accepted or decisively rejected by the Planck observations.Comment: 27 pages, 12 (colour) figures. Published in Phys. Rev. D. V.3: modifications made to reflect the published versio

    On analog quantum algorithms for the mixing of Markov chains

    Full text link
    The problem of sampling from the stationary distribution of a Markov chain finds widespread applications in a variety of fields. The time required for a Markov chain to converge to its stationary distribution is known as the classical mixing time. In this article, we deal with analog quantum algorithms for mixing. First, we provide an analog quantum algorithm that given a Markov chain, allows us to sample from its stationary distribution in a time that scales as the sum of the square root of the classical mixing time and the square root of the classical hitting time. Our algorithm makes use of the framework of interpolated quantum walks and relies on Hamiltonian evolution in conjunction with von Neumann measurements. There also exists a different notion for quantum mixing: the problem of sampling from the limiting distribution of quantum walks, defined in a time-averaged sense. In this scenario, the quantum mixing time is defined as the time required to sample from a distribution that is close to this limiting distribution. Recently we provided an upper bound on the quantum mixing time for Erd\"os-Renyi random graphs [Phys. Rev. Lett. 124, 050501 (2020)]. Here, we also extend and expand upon our findings therein. Namely, we provide an intuitive understanding of the state-of-the-art random matrix theory tools used to derive our results. In particular, for our analysis we require information about macroscopic, mesoscopic and microscopic statistics of eigenvalues of random matrices which we highlight here. Furthermore, we provide numerical simulations that corroborate our analytical findings and extend this notion of mixing from simple graphs to any ergodic, reversible, Markov chain.Comment: The section concerning time-averaged mixing (Sec VIII) has been updated: Now contains numerical plots and an intuitive discussion on the random matrix theory results used to derive the results of arXiv:2001.0630

    Sampling constrained probability distributions using Spherical Augmentation

    Full text link
    Statistical models with constrained probability distributions are abundant in machine learning. Some examples include regression models with norm constraints (e.g., Lasso), probit, many copula models, and latent Dirichlet allocation (LDA). Bayesian inference involving probability distributions confined to constrained domains could be quite challenging for commonly used sampling algorithms. In this paper, we propose a novel augmentation technique that handles a wide range of constraints by mapping the constrained domain to a sphere in the augmented space. By moving freely on the surface of this sphere, sampling algorithms handle constraints implicitly and generate proposals that remain within boundaries when mapped back to the original space. Our proposed method, called {Spherical Augmentation}, provides a mathematically natural and computationally efficient framework for sampling from constrained probability distributions. We show the advantages of our method over state-of-the-art sampling algorithms, such as exact Hamiltonian Monte Carlo, using several examples including truncated Gaussian distributions, Bayesian Lasso, Bayesian bridge regression, reconstruction of quantized stationary Gaussian process, and LDA for topic modeling.Comment: 41 pages, 13 figure

    Coherent Bayesian analysis of inspiral signals

    Full text link
    We present in this paper a Bayesian parameter estimation method for the analysis of interferometric gravitational wave observations of an inspiral of binary compact objects using data recorded simultaneously by a network of several interferometers at different sites. We consider neutron star or black hole inspirals that are modeled to 3.5 post-Newtonian (PN) order in phase and 2.5 PN in amplitude. Inference is facilitated using Markov chain Monte Carlo methods that are adapted in order to efficiently explore the particular parameter space. Examples are shown to illustrate how and what information about the different parameters can be derived from the data. This study uses simulated signals and data with noise characteristics that are assumed to be defined by the LIGO and Virgo detectors operating at their design sensitivities. Nine parameters are estimated, including those associated with the binary system, plus its location on the sky. We explain how this technique will be part of a detection pipeline for binary systems of compact objects with masses up to 20 \sunmass, including cases where the ratio of the individual masses can be extreme.Comment: Accepted for publication in Classical and Quantum Gravity, Special issue for GWDAW-1

    Extracting galactic binary signals from the first round of Mock LISA Data Challenges

    Full text link
    We report on the performance of an end-to-end Bayesian analysis pipeline for detecting and characterizing galactic binary signals in simulated LISA data. Our principal analysis tool is the Blocked-Annealed Metropolis Hasting (BAM) algorithm, which has been optimized to search for tens of thousands of overlapping signals across the LISA band. The BAM algorithm employs Bayesian model selection to determine the number of resolvable sources, and provides posterior distribution functions for all the model parameters. The BAM algorithm performed almost flawlessly on all the Round 1 Mock LISA Data Challenge data sets, including those with many highly overlapping sources. The only misses were later traced to a coding error that affected high frequency sources. In addition to the BAM algorithm we also successfully tested a Genetic Algorithm (GA), but only on data sets with isolated signals as the GA has yet to be optimized to handle large numbers of overlapping signals.Comment: 13 pages, 4 figures, submitted to Proceedings of GWDAW-11 (Berlin, Dec. '06

    Bayesian inference on compact binary inspiral gravitational radiation signals in interferometric data

    Full text link
    Presented is a description of a Markov chain Monte Carlo (MCMC) parameter estimation routine for use with interferometric gravitational radiational data in searches for binary neutron star inspiral signals. Five parameters associated with the inspiral can be estimated, and summary statistics are produced. Advanced MCMC methods were implemented, including importance resampling and prior distributions based on detection probability, in order to increase the efficiency of the code. An example is presented from an application using realistic, albeit fictitious, data.Comment: submitted to Classical and Quantum Gravity. 14 pages, 5 figure

    Technical recalls (TC): a lesser service?

    Get PDF

    Coherent Bayesian inference on compact binary inspirals using a network of interferometric gravitational wave detectors

    Get PDF
    Presented in this paper is a Markov chain Monte Carlo (MCMC) routine for conducting coherent parameter estimation for interferometric gravitational wave observations of an inspiral of binary compact objects using data from multiple detectors. The MCMC technique uses data from several interferometers and infers all nine of the parameters (ignoring spin) associated with the binary system, including the distance to the source, the masses, and the location on the sky. The Metropolis-algorithm utilises advanced MCMC techniques, such as importance resampling and parallel tempering. The data is compared with time-domain inspiral templates that are 2.5 post-Newtonian (PN) in phase and 2.0 PN in amplitude. Our routine could be implemented as part of an inspiral detection pipeline for a world wide network of detectors. Examples are given for simulated signals and data as seen by the LIGO and Virgo detectors operating at their design sensitivity.Comment: 10 pages, 4 figure
    corecore