32 research outputs found

    Noncoaxial multivortices in the complex sine-Gordon theory on the plane

    Full text link
    We construct explicit multivortex solutions for the complex sine-Gordon equation (the Lund-Regge model) in two Euclidean dimensions. Unlike the previously found (coaxial) multivortices, the new solutions comprise nn single vortices placed at arbitrary positions (but confined within a finite part of the plane.) All multivortices, including the single vortex, have an infinite number of parameters. We also show that, in contrast to the coaxial complex sine-Gordon multivortices, the axially-symmetric solutions of the Ginzburg-Landau model (the stationary Gross-Pitaevskii equation) {\it do not} belong to a broader family of noncoaxial multivortex configurations.Comment: 40 pages, 7 figures in colou

    Dyonic Giant Magnons

    Get PDF
    We study the classical spectrum of string theory on AdS_5 X S^5 in the Hofman-Maldacena limit. We find a family of classical solutions corresponding to Giant Magnons with two independent angular momenta on S^5. These solutions are related via Pohlmeyer's reduction procedure to the charged solitons of the Complex sine-Gordon equation. The corresponding string states are dual to BPS boundstates of many magnons in the spin-chain description of planar N=4 SUSY Yang-Mills. The exact dispersion relation for these states is obtained from a purely classical calculation in string theory.Comment: LaTeX file, 16 pages. One figure. Corrected reference

    Rational sequences for the conductance in quantum wires from affine Toda field theories

    Get PDF
    We analyse the expression for the conductance of a quantum wire which is decribed by an integrable quantum field theory. In the high temperature regime we derive a simple formula for the filling fraction. This expression involves only the inverse of a matrix which contains the information of the asymptotic phases of the scattering matrix and the solutions of the constant thermodynamic Bethe ansatz equations. Evaluating these expressions for minimal affine Toda field theory we recover several sequences of rational numbers, which are multiples of the famous Jain sequence for the filling fraction occurring in the context of the fractional quantum Hall effect. For instance we obtain ν=4m/(2m+1)\nu= 4 m/(2m +1) for A4m−1A_{4m-1}-minimal affine Toda field theory. The matrices involved have in general non-rational entries and are not part of previous classification schemes based on integral lattices.Comment: 9 pages Latex, version to appear in Journal of Physics

    The complex Sine-Gordon equation as a symmetry flow of the AKNS Hierarchy

    Full text link
    It is shown how the complex sine-Gordon equation arises as a symmetry flow of the AKNS hierarchy. The AKNS hierarchy is extended by the ``negative'' symmetry flows forming the Borel loop algebra. The complex sine-Gordon and the vector Nonlinear Schrodinger equations appear as lowest negative and second positive flows within the extended hierarchy. This is fully analogous to the well-known connection between the sine-Gordon and mKdV equations within the extended mKdV hierarchy. A general formalism for a Toda-like symmetry occupying the ``negative'' sector of sl(N) constrained KP hierarchy and giving rise to the negative Borel sl(N) loop algebra is indicated.Comment: 8 pages, LaTeX, typos corrected, references update

    Alleviating the non-ultralocality of coset sigma models through a generalized Faddeev-Reshetikhin procedure

    Get PDF
    The Faddeev-Reshetikhin procedure corresponds to a removal of the non-ultralocality of the classical SU(2) principal chiral model. It is realized by defining another field theory, which has the same Lax pair and equations of motion but a different Poisson structure and Hamiltonian. Following earlier work of M. Semenov-Tian-Shansky and A. Sevostyanov, we show how it is possible to alleviate in a similar way the non-ultralocality of symmetric space sigma models. The equivalence of the equations of motion holds only at the level of the Pohlmeyer reduction of these models, which corresponds to symmetric space sine-Gordon models. This work therefore shows indirectly that symmetric space sine-Gordon models, defined by a gauged Wess-Zumino-Witten action with an integrable potential, have a mild non-ultralocality. The first step needed to construct an integrable discretization of these models is performed by determining the discrete analogue of the Poisson algebra of their Lax matrices.Comment: 31 pages; v2: minor change

    A Study Of A New Class Of Discrete Nonlinear Schroedinger Equations

    Full text link
    A new class of 1D discrete nonlinear Schro¨{\ddot{\rm{o}}}dinger Hamiltonians with tunable nonlinerities is introduced, which includes the integrable Ablowitz-Ladik system as a limit. A new subset of equations, which are derived from these Hamiltonians using a generalized definition of Poisson brackets, and collectively refered to as the N-AL equation, is studied. The symmetry properties of the equation are discussed. These equations are shown to possess propagating localized solutions, having the continuous translational symmetry of the one-soliton solution of the Ablowitz-Ladik nonlinear Schro¨{\ddot{\rm{o}}}dinger equation. The N-AL systems are shown to be suitable to study the combined effect of the dynamical imbalance of nonlinearity and dispersion and the Peierls-Nabarro potential, arising from the lattice discreteness, on the propagating solitary wave like profiles. A perturbative analysis shows that the N-AL systems can have discrete breather solutions, due to the presence of saddle center bifurcations in phase portraits. The unstaggered localized states are shown to have positive effective mass. On the other hand, large width but small amplitude staggered localized states have negative effective mass. The collison dynamics of two colliding solitary wave profiles are studied numerically. Notwithstanding colliding solitary wave profiles are seen to exhibit nontrivial nonsolitonic interactions, certain universal features are observed in the collison dynamics. Future scopes of this work and possible applications of the N-AL systems are discussed.Comment: 17 pages, 15 figures, revtex4, xmgr, gn

    Soliton Spectrum of Integrable Models with Local Symmetries

    Full text link
    The soliton spectrum (massive and massless) of a family of integrable models with local U(1) and U(1)\otimes U(1) symmetries is studied. These models represent relevant integrable deformations of SL(2,R) \otimes U(1)^{n-1} - WZW and SL(2,R) \otimes SL(2,R)\otimes U(1)^{n-2} - WZW models. Their massless solitons appears as specific topological solutions of the U(1) (or U(1)\otimes U(1)) - CFTs. The nonconformal analog of the GKO-coset formula is derived and used in the construction of the composite massive solitons of the ungauged integrable models.Comment: 44 pages, Latex, 1 eps fig, few misprints corrected. to appear in JHE
    corecore