698 research outputs found
The SPICE carbon isotope excursion in Siberia: a combined study of the upper Middle Cambrian-lowermost Ordovician Kulyumbe River section, northwestern Siberian Platform
An integrated, high-resolution chemostratigraphic (C, O and Sr isotopes) and
magnetostratigraphic study through the upper Middle Cambrian–lowermost Ordovician shallowmarine
carbonates of the northwestern margin of the Siberian Platform is reported. The interval was
analysed at the Kulyumbe section, which is exposed along the Kulyumbe River, an eastern tributary
of the Enisej River. It comprises the upper Ust’-Brus, Labaz, Orakta, Kulyumbe, Ujgur and lower
Iltyk formations and includes the Steptoean positive carbon isotopic excursion (SPICE) studied here
in detail from upper Cambrian carbonates of the Siberian Platform for the first time. The peak of the
excursion, showing δ13C positive values as high as+4.6‰and least-altered 87Sr/86Sr ratios of 0.70909,
is reported herein from the Yurakhian Horizon of the Kulyumbe Formation. The stratigraphic position
of the SPICE excursion does not support traditional correlation of the boundary between theOrakta and
Labaz formations at the Kulyumbe River with its supposedly equivalent level in Australia, Laurentia,
South China and Kazakhstan, where the Glyptagnostus stolidotus and G. reticulatus biozones are
known to immediately precede the SPICE excursion and span the Middle–Upper Cambrian boundary.
The Cambrian–Ordovician boundary is probably situated in the middle Nyajan Horizon of the Iltyk
Formation, in which carbon isotope values show a local maximum below a decrease in the upper
part of the Nyajan Horizon, attributed herein to the Tremadocian Stage. A refined magnetic polarity
sequence confirms that the geomagnetic reversal frequency was very high during Middle Cambrian
times at 7–10 reversals per Ma, assuming a total duration of about 10 Ma and up to 100 magnetic
intervals in the Middle Cambrian. By contrast, the sequence attributed herein to the Upper Cambrian
on chemostratigraphic grounds contains only 10–11 magnetic intervals
Classification in sparse, high dimensional environments applied to distributed systems failure prediction
Network failures are still one of the main causes of distributed systems’ lack of reliability. To overcome this problem we present an improvement over a failure prediction system, based on Elastic Net Logistic Regression and the application of rare events prediction techniques, able to work with sparse, high dimensional datasets. Specifically, we prove its stability, fine tune its hyperparameter and improve its industrial utility by showing that, with a slight change in dataset creation, it can also predict the location of a failure, a key asset when trying to take a proactive approach to failure management
Charge distribution in two-dimensional electrostatics
We examine the stability of ringlike configurations of N charges on a plane
interacting through the potential . We interpret the equilibrium distributions in terms of a shell
model and compare predictions of the model with the results of numerical
simulations for systems with up to 100 particles.Comment: LaTe
Results from the LHC Beam Dump Reliability Run
The LHC Beam Dumping System is one of the vital elements of the LHC Machine Protection System and has to operate reliably every time a beam dump request is made. Detailed dependability calculations have been made, resulting in expected rates for the different system failure modes. A 'reliability run' of the whole system, installed in its final configuration in the LHC, has been made to discover infant mortality problems and to compare the occurrence of the measured failure modes with their calculations
Experience with the LHC beam dump post-operational checks system
After each beam dump in the LHC automatic post-operational checks are made to guarantee that the last beam dump has been executed correctly and that the system can be declared to be ‘as good as new’ before the next injection is allowed. The analysis scope comprises the kicker waveforms, redundancy in kicker generator signal paths and different beam instrumentation measurements. This paper describes the implementation and the operational experience of the internal and external post-operational checks of the LHC beam dumping system during the commissioning of the LHC without beam and during the first days of beam operation
Facet ridge end points in crystal shapes
Equilibrium crystal shapes (ECS) near facet ridge end points (FRE) are
generically complex. We study the body-centered solid-on-solid model on a
square lattice with an enhanced uniaxial interaction range to test the
stability of the so-called stochastic FRE point where the model maps exactly
onto one dimensional Kardar-Parisi-Zhang type growth and the local ECS is
simple. The latter is unstable. The generic ECS contains first-order ridges
extending into the rounded part of the ECS, where two rough orientations
coexist and first-order faceted to rough boundaries terminating in
Pokrovsky-Talapov type end points.Comment: Contains 4 pages, 5 eps figures. Uses RevTe
Computing the Roughening Transition of Ising and Solid-On-Solid Models by BCSOS Model Matching
We study the roughening transition of the dual of the 2D XY model, of the
Discrete Gaussian model, of the Absolute Value Solid-On-Solid model and of the
interface in an Ising model on a 3D simple cubic lattice. The investigation
relies on a renormalization group finite size scaling method that was proposed
and successfully tested a few years ago. The basic idea is to match the
renormalization group flow of the interface observables with that of the
exactly solvable BCSOS model. Our estimates for the critical couplings are
, and for
the XY-model, the Discrete Gaussian model and the Absolute Value Solid-On-Solid
model, respectively. For the inverse roughening temperature of the Ising
interface we find . To the best of our knowledge,
these are the most precise estimates for these parameters published so far.Comment: 25 pages, LaTeX file, no figure
Initial results from beam commissioning of the LHC beam dump system
Initial commissioning of the LHC beam dump system with beam took place in August and September 2008. The preparation, setting-up and the tests performed are described together with results of the extractions of beam into the dump lines. Analysis of the first detailed aperture measurements of the extraction channels and kicker performance derived from dilution sweep shapes are presented. The performance of the other equipment subsystems is summarised, in particular that of the dedicated dump system beam instrumentation
Vicinal Surface with Langmuir Adsorption: A Decorated Restricted Solid-on-solid Model
We study the vicinal surface of the restricted solid-on-solid model coupled
with the Langmuir adsorbates which we regard as two-dimensional lattice gas
without lateral interaction. The effect of the vapor pressure of the adsorbates
in the environmental phase is taken into consideration through the chemical
potential. We calculate the surface free energy , the adsorption coverage
, the step tension , and the step stiffness by
the transfer matrix method combined with the density-matrix algorithm. Detailed
step-density-dependence of and is obtained. We draw the roughening
transition curve in the plane of the temperature and the chemical potential of
adsorbates. We find the multi-reentrant roughening transition accompanying the
inverse roughening phenomena. We also find quasi-reentrant behavior in the step
tension.Comment: 7 pages, 12 figures (png format), RevTeX 3.1, submitted to Phys. Rev.
Cardiosphere-derived cells suppress allogeneic lymphocytes by production of PGE2 acting via the EP4 receptor
derived cells (CDCs) are a cardiac progenitor cell population, which have been shown to possess cardiac regenerative properties and can improve heart function in a variety of cardiac diseases. Studies in large animal models have predominantly focussed on using autologous cells for safety, however allogeneic cell banks would allow for a practical, cost-effective and efficient use in a clinical setting. The aim of this work was to determine the immunomodulatory status of these cells using CDCs and lymphocytes from 5 dogs. CDCs expressed MHC I but not MHC II molecules and in mixed lymphocyte reactions demonstrated a lack of lymphocyte proliferation in response to MHC-mismatched CDCs. Furthermore, MHC-mismatched CDCs suppressed lymphocyte proliferation and activation in response to Concanavalin A. Transwell experiments demonstrated that this was predominantly due
to direct cell-cell contact in addition to soluble mediators whereby CDCs produced high levels of PGE2
under inflammatory conditions. This led to down-regulation of CD25 expression on lymphocytes via the
EP4 receptor. Blocking prostaglandin synthesis restored both, proliferation and activation (measured via CD25 expression) of stimulated lymphocytes. We demonstrated for the first time in a large animal model that CDCs inhibit proliferation in allo-reactive lymphocytes and have potent immunosuppressive activity mediated via PGE2
- …
