19,983 research outputs found
Module degradation catalyzed by metal-encapsulation reactions
Four major properties are considered to be relevant in determining service life of a photovoltaic module: (1) Mechanical: creep resistance, modulus, tensile strength; (2) Optical: integrated transmission at 0.4 to 1.1 m wavelength; (3) Chemical: inertness with respect to metals and other components, retention of stabilizers, etc. and (4) Electrical; maintaining effective isolation of conductive components. These properties were measured after exposing polymer specimens to three types of accelerated stress: thermal, ultraviolet radiation and metal catalysts. These conditions give rise to a large number of complex interrelated free-radical reactions that result in the deterioration of polymeric materials
Land use analysis of US urban areas using high-resolution imagery from Skylab
The author has identified the following significant results. The S-190B imagery from Skylab 3 permitted the detection of higher levels of land use detail than any satellite imagery previously evaluated using manual interpretation techniques. Resolution approaches that of 1:100,000 scale infrared aircraft photography, especially regarding urban areas. Nonurban areas are less distinct
Relative resilience to noise of standard and sequential approaches to measurement-based quantum computation
A possible alternative to the standard model of measurement-based quantum
computation (MBQC) is offered by the sequential model of MBQC -- a particular
class of quantum computation via ancillae. Although these two models are
equivalent under ideal conditions, their relative resilience to noise in
practical conditions is not yet known. We analyze this relationship for various
noise models in the ancilla preparation and in the entangling-gate
implementation. The comparison of the two models is performed utilizing both
the gate infidelity and the diamond distance as figures of merit. Our results
show that in the majority of instances the sequential model outperforms the
standard one in regard to a universal set of operations for quantum
computation. Further investigation is made into the performance of sequential
MBQC in experimental scenarios, thus setting benchmarks for possible cavity-QED
implementations.Comment: 11 pages, 11 figures; close to published versio
Flat-plate solar array project. Volume 5: Process development
The goal of the Process Development Area, as part of the Flat-Plate Solar Array (FSA) Project, was to develop and demonstrate solar cell fabrication and module assembly process technologies required to meet the cost, lifetime, production capacity, and performance goals of the FSA Project. R&D efforts expended by Government, Industry, and Universities in developing processes capable of meeting the projects goals during volume production conditions are summarized. The cost goals allocated for processing were demonstrated by small volume quantities that were extrapolated by cost analysis to large volume production. To provide proper focus and coverage of the process development effort, four separate technology sections are discussed: surface preparation, junction formation, metallization, and module assembly
Status of SEMI's solar-grade substrate standards
A proposal for a standard specifications listing covering requirements for silicon wafers used in solar cell manufacturing is outlined. The specific contents of the general requirements specifications include: ordering information; dimensions and permissible variations; material and manufacture; physical parameters; sampling; test methods; certification; and packaging and marking
Increased voltage photovoltaic cell
A photovoltaic cell, such as a solar cell, is provided which has a higher output voltage than prior cells. The improved cell includes a substrate of doped silicon, a first layer of silicon disposed on the substrate and having opposite doping, and a second layer of silicon carbide disposed on the first layer. The silicon carbide preferably has the same type of doping as the first layer
Ultraviolet/X-ray variability and the extended X-ray emission of the radio-loud broad absorption line quasar PG 1004+130
We present the results of recent Chandra, XMM-Newton, and Hubble Space
Telescope observations of the radio-loud (RL), broad absorption line (BAL)
quasar PG 1004+130. We compare our new observations to archival X-ray and UV
data, creating the most comprehensive, high signal-to-noise, multi-epoch,
spectral monitoring campaign of a RL BAL quasar to date. We probe for
variability of the X-ray absorption, the UV BAL, and the X-ray jet, on
month-year timescales. The X-ray absorber has a low column density of
cm when it is assumed to be fully
covering the X-ray emitting region, and its properties do not vary
significantly between the 4 observations. This suggests the observed absorption
is not related to the typical "shielding gas" commonly invoked in BAL quasar
models, but is likely due to material further from the central black hole. In
contrast, the CIV BAL shows strong variability. The equivalent width (EW) in
2014 is EW=11.240.56 \AA, showing a fractional increase of =1.160.11 from the 2003 observation, 3183 days earlier
in the rest-frame. This places PG 1004+130 among the most highly variable BAL
quasars. By combining Chandra observations we create an exposure 2.5 times
deeper than studied previously, with which to investigate the nature of the
X-ray jet and extended diffuse X-ray emission. An X-ray knot, likely with a
synchrotron origin, is detected in the radio jet ~8 arcsec (30 kpc) from the
central X-ray source with a spatial extent of ~4 arcsec (15 kpc). No similar
X-ray counterpart to the counterjet is detected. Asymmetric, non-thermal
diffuse X-ray emission, likely due to inverse Compton scattering of Cosmic
Microwave Background photons, is also detected.Comment: 15 pages, 7 figures, 3 tables. Accepted for publication in Ap
Urban and regional land use analysis: CARETS and census cities experiment package
The author has identified the following significant results. Temperatures in degrees Celsius were derived from PCM counts using the Pease's modified gray window technique. The Outcalt simulator was setup on the USGS computer. The input data to the model are basically meteorological and geographical in nature. The output data is presented in three matrices
- …
