651,146 research outputs found

    Exact treatment of ℓ≠0\ell \neq 0 states

    Full text link
    Using the basic ingredient of supersymmetry, a general procedure for the treatment of quantum states having nonzero angular momenta is presented.Comment: 7 pages article in LaTEX (uses standard article.sty). No Figures. Accepted by Chinese Physics Letters (2004, vol 21. No.9

    The dynamics of neutron star crusts: Lagrangian perturbation theory for a relativistic superfluid-elastic system

    Full text link
    The inner crust of a mature neutron star is composed of an elastic lattice of neutron-rich nuclei penetrated by free neutrons. These neutrons can flow relative to the crust once the star cools below the superfluid transition temperature. In order to model the dynamics of this system, which is relevant for a range of problems from pulsar glitches to magnetar seismology and continuous gravitational-wave emission from rotating deformed neutron stars, we need to understand general relativistic Lagrangian perturbation theory for elastic matter coupled to a superfluid component. This paper develops the relevant formalism to the level required for astrophysical applications.Comment: 31 pages, double spacing, minor typos fixe

    Recent developments in rotary-balance testing of fighter aircraft configurations at NASA Ames Research Center

    Get PDF
    Two rotary balance apparatuses were developed for testing airplane models in a coning motion. A large scale apparatus, developed for use in the 12-Foot Pressure Wind tunnel primarily to permit testing at high Reynolds numbers, was recently used to investigate the aerodynamics of 0.05-scale model of the F-15 fighter aircraft. Effects of Reynolds number, spin rate parameter, model attitude, presence of a nose boom, and model/sting mounting angle were investigated. A smaller apparatus, which investigates the aerodynamics of bodies of revolution in a coning motion, was used in the 6-by-6 foot Supersonic Wind Tunnel to investigate the aerodynamic behavior of a simple representation of a modern fighter, the Standard Dynamic Model (SDM). Effects of spin rate parameter and model attitude were investigated. A description of the two rigs and a discussion of some of the results obtained in the respective test are presented

    Quantum and Classical Binomial Distributions for the Charge Transmitted through Coherent Conductor

    Full text link
    We discuss controversial results for the statistics of charge transport through coherent conductors. Two distribution functions for the charge transmitted was obtained previously, first by L.Levitov and G.Lesovik, [JETP Letters Vol.55 p.555 (1992)] and the other initially by the same authors [ibid. Vol.58 p.230 (1993)], and later the result was reproduced by several authors. The latter distribution functions actually coincides with classical binomial distribution (though obtained purely quantum mechanically) former (result of 1992) is different and we call it here quantum binomial distribution. The two distribution function represent two opposite universal limits - one is purely quantum, where interference is important, and the other is semiclassical, where interference is smeared out. We show, that high order charge correlators, determined by the either distribution functions, can all be measured in different setups. The high order current correlators, starting the third order, reveal (missed in previous studies) special oscillating frequency dependence on the scale of the inverted time flight from the obstacle to the measuring point. Depending on setup, the oscillating terms give substantially different contributions.Comment: 4 pages; english versio

    Induced low-energy effective action in the 6D, N=(1,0) hypermultiplet theory on the vector multiplet background

    Get PDF
    We consider the six dimensional N=(1,0) hypermultiplet model coupled to an external field of the Abelian vector multiplet in harmonic superspace approach. Using the superfield proper-time technique we find the divergent part of the effective action and derive the complete finite induced low-energy superfield effective action. This effective action depends on external field and contains in bosonic sector all the powers of the constant Maxwell field strength. The obtained result can be treated as the 6D, N=(1,0) supersymmetric Heisenberg-Euler type effective action.Comment: 15 pages; v2: minor correction

    Dynamic vortex mass in clean Fermi superfluids and superconductors

    Full text link
    We calculate the dynamic vortex mass for clean Fermi superfluids including both s- and d-wave superconductors as a response to a vortex acceleration. Assuming a finite quasiparticle mean free time, the vortex mass appears to be a tensor. The diagonal component dominates in the limit of long mean free time while the off-diagonal mass takes over in the moderately clean regime.Comment: 4 pages, no figures, typeset using RevTe

    Radiative parton energy loss and jet quenching in high-energy heavy-ion collisions

    Full text link
    We study within the light-cone path integral approach [3] the effect of the induced gluon radiation on high-p_{T} hadrons in high-energy heavy-ion collisions. The induced gluon spectrum is represented in a new form which is convenient for numerical simulations. For the first time, computations are performed with a realistic parametrization of the dipole cross section. The results are in reasonable agreement with suppression of high-p_{T} hadrons in Au+Au collisions at \sqrt{s}=200 GeV observed at RHIC.Comment: 12 pages, 3 epsi figures. Typos correcte
    • …
    corecore