19,121 research outputs found
A Fractional Calculus of Variations for Multiple Integrals with Application to Vibrating String
We introduce a fractional theory of the calculus of variations for multiple
integrals. Our approach uses the recent notions of Riemann-Liouville fractional
derivatives and integrals in the sense of Jumarie. Main results provide
fractional versions of the theorems of Green and Gauss, fractional
Euler-Lagrange equations, and fractional natural boundary conditions. As an
application we discuss the fractional equation of motion of a vibrating string.Comment: Accepted for publication in the Journal of Mathematical Physics
(14/January/2010
Neutral heavy lepton production at next high energy linear colliders
The discovery potential for detecting new heavy Majorana and Dirac neutrinos
at some recently proposed high energy colliders is discussed. These
new particles are suggested by grand unified theories and superstring-inspired
models. For these models the production of a single heavy neutrino is shown to
be more relevant than pair production when comparing cross sections and
neutrino mass ranges.
The process is calculated
including on-shell and off-shell heavy neutrino effects.
We present a detailed study of cross sections and distributions that shows a
clear separation between the signal and standard model contributions, even
after including hadronization effects.Comment: 4 pages including 15 figures, 1 table. RevTex. Accepted in Physical
Review
Recording from two neurons: second order stimulus reconstruction from spike trains and population coding
We study the reconstruction of visual stimuli from spike trains, recording
simultaneously from the two H1 neurons located in the lobula plate of the fly
Chrysomya megacephala. The fly views two types of stimuli, corresponding to
rotational and translational displacements. If the reconstructed stimulus is to
be represented by a Volterra series and correlations between spikes are to be
taken into account, first order expansions are insufficient and we have to go
to second order, at least. In this case higher order correlation functions have
to be manipulated, whose size may become prohibitively large. We therefore
develop a Gaussian-like representation for fourth order correlation functions,
which works exceedingly well in the case of the fly. The reconstructions using
this Gaussian-like representation are very similar to the reconstructions using
the experimental correlation functions. The overall contribution to rotational
stimulus reconstruction of the second order kernels - measured by a chi-squared
averaged over the whole experiment - is only about 8% of the first order
contribution. Yet if we introduce an instant-dependent chi-square to measure
the contribution of second order kernels at special events, we observe an up to
100% improvement. As may be expected, for translational stimuli the
reconstructions are rather poor. The Gaussian-like representation could be a
valuable aid in population coding with large number of neurons
- …