63 research outputs found

    Strain dependent differences in glucocorticoid-induced bone loss between C57BL/6J and CD-1 mice

    Get PDF
    We have investigated the effect of long-term glucocorticoid (GC) administration on bone turnover in two frequently used mouse strains; C57BL/6J and CD1, in order to assess the influence of their genetic background on GC-induced osteoporosis (GIO). GIO was induced in 12 weeks old female C57BL/6J and CD1 mice by subcutaneous insertion of long-term release prednisolone or placebo pellets. Biomechanical properties as assessed by three point bent testing revealed that femoral elasticity and strength significantly decreased in CD1 mice receiving GC, whereas C57BL/6J mice showed no differences between placebo and prednisolone treatment. Bone turnover assessed by microcomputer tomography revealed that contrary to C57BL/6J mice, prednisolone treated CD1 mice developed osteoporosis. In vitro experiments have underlined that, at a cellular level, C57BL/6J mice osteoclasts and osteoblasts were less responsive to GC treatment and tolerated higher doses than CD1 cells. Whilst administration of long-term release prednisolone pellets provided a robust GIO animal model in 12 weeks old CD1 mice, age matched C57BL/6J mice were not susceptible to the bone changes associated with GIO. This study indicates that for the induction of experimental GIO, the mouse strain choice together with other factors such as age should be carefully evaluated

    The Src inhibitor dasatinib accelerates the differentiation of human bone marrow-derived mesenchymal stromal cells into osteoblasts

    Get PDF
    The proto-oncogene Src is an important non-receptor protein tyrosine kinase involved in signaling pathways that control cell adhesion, growth, migration and differentiation. It negatively regulates osteoblast activity, and, as such, its inhibition is a potential means to prevent bone loss. Dasatinib is a new dual Src/Bcr-Abl tyrosine kinase inhibitor initially developed for the treatment of chronic myeloid leukemia. It has also shown promising results in preclinical studies in various solid tumors. However, its effects on the differentiation of human osteoblasts have never been examined.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    BRITER: A BMP Responsive Osteoblast Reporter Cell Line

    Get PDF
    BACKGROUND: BMP signaling pathway is critical for vertebrate development and tissue homeostasis. High-throughput molecular genetic screening may reveal novel players regulating BMP signaling response while chemical genetic screening of BMP signaling modifiers may have clinical significance. It is therefore important to generate a cell-based tool to execute such screens. METHODOLOGY/PRINCIPAL FINDINGS: We have established a BMP responsive reporter cell line by stably integrating a BMP responsive dual luciferase reporter construct in the immortalized calvarial osteoblast cells isolated from tamoxifen inducible Bmp2; Bmp4 double conditional knockout mouse strain. This cell line, named BRITER (BMP Responsive Immortalized Reporter cell line), responds robustly, promptly and specifically to exogenously added BMP2 protein. The sensitivity to added BMP may be further increased by depleting the endogenous BMP2 and BMP4 proteins. CONCLUSION: As the dynamic range of the assay (for BMP responsiveness) is very high for BRITER and as it responds specifically and promptly to exogenously added BMP2 protein, BRITER may be used effectively for chemical or molecular genetic screening for BMP signaling modifiers. Identification of novel molecular players capable of influencing BMP signaling pathway may have clinical significance

    Increased autophagy in EphrinB2-deficient osteocytes is associated with elevated secondary mineralization and brittle bone

    Get PDF
    Mineralized bone forms when collagen-containing osteoid accrues mineral crystals. This is initiated rapidly (primary mineralization), and continues slowly (secondary mineralization) until bone is remodeled. The interconnected osteocyte network within the bone matrix differentiates from bone-forming osteoblasts; although osteoblast differentiation requires EphrinB2, osteocytes retain its expression. Here we report brittle bones in mice with osteocyte-targeted EphrinB2 deletion. This is not caused by low bone mass, but by defective bone material. While osteoid mineralization is initiated at normal rate, mineral accrual is accelerated, indicating that EphrinB2 in osteocytes limits mineral accumulation. No known regulators of mineralization are modified in the brittle cortical bone but a cluster of autophagy-associated genes are dysregulated. EphrinB2-deficient osteocytes displayed more autophagosomes in vivo and in vitro, and EphrinB2-Fc treatment suppresses autophagy in a RhoA-ROCK dependent manner. We conclude that secondary mineralization involves EphrinB2-RhoA-limited autophagy in osteocytes, and disruption leads to a bone fragility independent of bone mass

    Die desmale Knochenheilung

    No full text
    • …
    corecore