82,910 research outputs found
Recommended from our members
Generalised additive dependency inflated models including aggregated covariates
Let us assume that X, Y and U are observed and that the conditional mean of U given X and Y can be expressed via an additive dependency of X, λ(X)Y and X + Y for some unspecified function . This structured regression model can be transferred to a hazard model or a density model when applied on some appropriate grid, and has important forecasting applications via structured marker dependent hazards models or structured density models including age-period-cohort relationships. The structured regression model is also important when the severity of the dependent variable has a complicated dependency on waiting times X, Y and the total waiting time X+Y . In case the conditional mean of U approximates a density, the regression model can be used to analyse the age-period-cohort model, also when exposure data are not available. In case the conditional mean of U approximates a marker dependent hazard, the regression model introduces new relevant age-period-cohort time scale interdependencies in understanding longevity. A direct use of the regression relationship introduced in this paper is the estimation of the severity of outstanding liabilities in non-life insurance companies. The technical approach taken is to use B-splines to capture the underlying one-dimensional unspecified functions. It is shown via finite sample simulation studies and an application for forecasting future asbestos related deaths in the UK that the B-spline approach works well in practice. Special consideration has been given to ensure identifiability of all models considered
Origin of the high piezoelectric response in PbZr(1-x)TixO3
High resolution x-ray powder diffraction measurements on poled PbZr(1-x)TixO3
(PZT) ceramic samples close to the rhombohedral-tetragonal phase boundary (the
so-called morphotropic phase boundary, MPB) have shown that for both
rhombohedral and tetragonal compositions, the piezoelectric elongation of the
unit cell does not occur along the polar directions but along those directions
associated with the monoclinic distortion. This work provides the first direct
evidence for the origin of the very high piezoelectricity in PZT.Comment: 4 pages, 4 EPS figures embedded. More specific title and abstract. To
appear in Phys. Rev. Let
Ergodic property of Markovian semigroups on standard forms of von Neumann algebras
We give sufficient conditions for ergodicity of the Markovian semigroups
associated to Dirichlet forms on standard forms of von Neumann algebras
constructed by the method proposed in Refs. [Par1,Par2]. We apply our result to
show that the diffusion type Markovian semigroups for quantum spin systems are
ergodic in the region of high temperatures where the uniqueness of the
KMS-state holds.Comment: 25 page
Epitaxial Growth of an n-type Ferromagnetic Semiconductor CdCr2Se4 on GaAs(001) and GaP(001)
We report the epitaxial growth of CdCr2Se4, an n-type ferromagnetic
semiconductor, on both GaAs and GaP(001) substrates, and describe the
structural, magnetic and electronic properties. Magnetometry data confirm
ferromagnetic order with a Curie temperature of 130 K, as in the bulk material.
The magnetization exhibits hysteretic behavior with significant remanence, and
an in-plane easy axis with a coercive field of ~125 Oe. Temperature dependent
transport data show that the films are semiconducting in character and n-type
as grown, with room temperature carrier concentrations of n ~ 1 x 10^18 cm-3.Comment: 12 pages, 3 figure
The monoclinic phase in PZT: new light on morphotropic phase boundaries
A summary of the work recently carried out on the morphotropic phase boundary
(MPB) of PZT is presented. By means of x-ray powder diffraction on ceramic
samples of excellent quality, the MPB has been successfully characterized by
changing temperature in a series of closely spaced compositions. As a result,
an unexpected monoclinic phase has been found to exist in between the
well-known tetragonal and rhombohedral PZT phases. A detailed structural
analysis, together with the investigation of the field effect in this region of
compositions, have led to an important advance in understanding the mechanisms
responsible for the physical properties of PZT as well as other piezoelectric
materials with similar morphotropic phase boundaries.Comment: 5 pages REVTeX file, 6 figures embedded. Presented at the Workshop on
"Fundamental Physics of Ferroelectrics" held in Aspen, February 00. To appear
in the proceeding
Cooperative ordering of gapped and gapless spin networks in CuFeGeO
The unusual magnetic properties of a novel low-dimensional quantum
ferrimagnet CuFeGeO are studied using bulk methods, neutron
diffraction and inelastic neutron scattering. It is shown that this material
can be described in terms of two low-dimensional quantum spin subsystems, one
gapped and the other gapless, characterized by two distinct energy scales.
Long-range magnetic ordering observed at low temperatures is a cooperative
phenomenon caused by weak coupling of these two spin networks.Comment: 4 pages, 4 figure
Detection of an exoplanet around the evolved K giant HD 66141
Aims. We have been carrying out a precise radial velocity (RV) survey for K
giants to search for and study the origin of the lowamplitude and long-periodic
RV variations.
Methods. We present high-resolution RV measurements of the K2 giant HD 66141
from December 2003 to January 2011 using the fiber-fed Bohyunsan Observatory
Echelle Spectrograph (BOES) at Bohyunsan Optical Astronomy Observatory (BOAO).
Results. We find that the RV measurements for HD 66141 exhibit a periodic
variation of 480.5 +/- 0.5 days with a semi-amplitude of 146.2 +/- 2.7 m/s. The
Hipparcos photometry and bisector velocity span (BVS) do not show any obvious
correlations with RV variations. We find indeed 706.4 +/- 35.0 day variations
in equivalent width (EW) measurements of H_alpha line and 703.0 +/- 39.4 day
variations in a space-born measurements 1.25{\mu} flux of HD 66141 measured
during COBE/DIRBE experiment. We reveal that a mean value of long-period
variations is about 705 +/- 53 days and the origin is a rotation period of the
star and variability that is caused by surface inhomogeneities. For the 480 day
periods of RV variations an orbital motion is the most likely explanation.
Assuming a stellar mass of 1.1 +/- 0.1 M_Sun? for HD 66141, we obtain a minimum
mass for the planetary companion of 6.0 +/- 0.3 M_Jup with an orbital
semi-major axis of 1.2 +/- 0.1 AU and an eccentricity of 0.07 +/- 0.03.Comment: 7 pages, 10 figures, 3 tables, accepted for publisation in Astronomy
& Astrophysic
Symmetry of high-piezoelectric Pb-based complex perovskites at the morphotropic phase boundary I. Neutron diffraction study on Pb(Zn1/3Nb2/3)O3 -9%PbTiO3
The symmetry was examined using neutron diffraction method on
Pb(Zn1/3Nb2/3)O3 -9%PbTiO3 (PZN/9PT) which has a composition at the
morphotropic phase boundary (MPB) between Pb(Zn1/3Nb2/3)O3 and PbTiO3. The
results were compared with those of other specimens with same composition but
with different prehistory. The equilibrium state of all examined specimens is
not the mixture of rhombohedral and tetragonal phases of the end members but
exists in a new polarization rotation line Mc# (orthorhombic-monoclinic line).
Among examined specimens, one exhibited tetragonal symmetry at room temperature
but recovered monoclinic phase after a cooling and heating cycle
Observation of the spontaneous vortex phase in the weakly ferromagnetic superconductor ErNiBC: A penetration depth study
The coexistence of weak ferromagnetism and superconductivity in ErNiBC suggests the possibility of a spontaneous vortex phase (SVP) in which
vortices appear in the absence of an external field. We report evidence for the
long-sought SVP from the in-plane magnetic penetration depth of high-quality single crystals of ErNiBC. In addition to
expected features at the N\'{e}el temperature = 6.0 K and weak
ferromagnetic onset at K, rises to a maximum
at K before dropping sharply down to 0.1 K. We assign the
0.45 K-maximum to the proliferation and freezing of spontaneous vortices. A
model proposed by Koshelev and Vinokur explains the increasing as a consequence of increasing vortex density, and its subsequent decrease
below as defect pinning suppresses vortex hopping.Comment: 5 pages including figures; added inset to Figure 2; significant
revisions to tex
- …