147 research outputs found

    Interpol: An R package for preprocessing of protein sequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most machine learning techniques currently applied in the literature need a fixed dimensionality of input data. However, this requirement is frequently violated by real input data, such as DNA and protein sequences, that often differ in length due to insertions and deletions. It is also notable that performance in classification and regression is often improved by numerical encoding of amino acids, compared to the commonly used sparse encoding.</p> <p>Results</p> <p>The software "Interpol" encodes amino acid sequences as numerical descriptor vectors using a database of currently 532 descriptors (mainly from AAindex), and normalizes sequences to uniform length with one of five linear or non-linear interpolation algorithms. Interpol is distributed with open source as platform independent R-package. It is typically used for preprocessing of amino acid sequences for classification or regression.</p> <p>Conclusions</p> <p>The functionality of Interpol widens the spectrum of machine learning methods that can be applied to biological sequences, and it will in many cases improve their performance in classification and regression.</p

    Improved Bevirimat resistance prediction by combination of structural and sequence-based classifiers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Maturation inhibitors such as Bevirimat are a new class of antiretroviral drugs that hamper the cleavage of HIV-1 proteins into their functional active forms. They bind to these preproteins and inhibit their cleavage by the HIV-1 protease, resulting in non-functional virus particles. Nevertheless, there exist mutations in this region leading to resistance against Bevirimat. Highly specific and accurate tools to predict resistance to maturation inhibitors can help to identify patients, who might benefit from the usage of these new drugs.</p> <p>Results</p> <p>We tested several methods to improve Bevirimat resistance prediction in HIV-1. It turned out that combining structural and sequence-based information in classifier ensembles led to accurate and reliable predictions. Moreover, we were able to identify the most crucial regions for Bevirimat resistance computationally, which are in line with experimental results from other studies.</p> <p>Conclusions</p> <p>Our analysis demonstrated the use of machine learning techniques to predict HIV-1 resistance against maturation inhibitors such as Bevirimat. New maturation inhibitors are already under development and might enlarge the arsenal of antiretroviral drugs in the future. Thus, accurate prediction tools are very useful to enable a personalized therapy.</p

    INTCare: a knowledge discovery based intelligent decision support system for intensive care medicine

    Get PDF
    This paper introduces the INTCare system, an intelligent information system based on a completely automated Knowledge Discovery process and on the Agents paradigm. The system was designed to work in Hospital Intensive Care Units, supporting the physicians’ decisions by means of prognostic Data Mining models. In particular, these techniques were used to predict organ failure and mortality assessment. The main intention is to change the current reactive behaviour to a pro-active one, enhancing the quality of service. Current applications and experimentations, the functional and structural aspects, and technological options are presented

    Machine learning on normalized protein sequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Machine learning techniques have been widely applied to biological sequences, e.g. to predict drug resistance in HIV-1 from sequences of drug target proteins and protein functional classes. As deletions and insertions are frequent in biological sequences, a major limitation of current methods is the inability to handle varying sequence lengths.</p> <p>Findings</p> <p>We propose to normalize sequences to uniform length. To this end, we tested one linear and four different non-linear interpolation methods for the normalization of sequence lengths of 19 classification datasets. Classification tasks included prediction of HIV-1 drug resistance from drug target sequences and sequence-based prediction of protein function. We applied random forests to the classification of sequences into "positive" and "negative" samples. Statistical tests showed that the linear interpolation outperforms the non-linear interpolation methods in most of the analyzed datasets, while in a few cases non-linear methods had a small but significant advantage. Compared to other published methods, our prediction scheme leads to an improvement in prediction accuracy by up to 14%.</p> <p>Conclusions</p> <p>We found that machine learning on sequences normalized by simple linear interpolation gave better or at least competitive results compared to state-of-the-art procedures, and thus, is a promising alternative to existing methods, especially for protein sequences of variable length.</p

    Notiz über die OstsibirischenPyrrhula-Arten

    No full text
    corecore