6,513 research outputs found
On the presentation of the LHC Higgs Results
We put forth conclusions and suggestions regarding the presentation of the
LHC Higgs results that may help to maximize their impact and their utility to
the whole High Energy Physics community.Comment: Conclusions from the workshops "Likelihoods for the LHC Searches",
21-23 January 2013 at CERN, "Implications of the 125 GeV Higgs Boson", 18-22
March 2013 at LPSC Grenoble, and from the 2013 Les Houches "Physics at TeV
Colliders" workshop. 16 pages, 3 figures. Version 2: Comment added on the
first publication of signal strength likelihoods in digital form by ATLA
Report of the QCD Working Group
The activities of the QCD working group concentrated on improving the
understanding and Monte Carlo simulation of multi-jet final states due to hard
QCD processes at LEP, i.e. quark-antiquark plus multi-gluon and/or secondary
quark production, with particular emphasis on four-jet final states and b-quark
mass effects. Specific topics covered are: relevant developments in the main
event generators PYTHIA, HERWIG and ARIADNE; the new multi-jet generator
APACIC++; description and tuning of inclusive (all-flavour) jet rates; quark
mass effects in the three- and four-jet rates; mass, higher-order and
hadronization effects in four-jet angular and shape distributions; b-quark
fragmentation and gluon splitting into b-quarks.Comment: 95 pages, 48 figures, contribution to Proceedings of the LEP2 Monte
Carlo Workshop. References for NLO 4-jet matrix elements adde
Determination of the Strong Coupling \boldmath{\as} from hadronic Event Shapes and NNLO QCD predictions using JADE Data
Event Shape Data from annihilation into hadrons collected by the
JADE experiment at centre-of-mass energies between 14 GeV and 44 GeV are used
to determine the strong coupling . QCD predictions complete to
next-to-next-to-leading order (NNLO), alternatively combined with resummed
next-to-leading-log-approximation (NNLO+NLLA) calculations, are used. The
combined value from six different event shape observables at the six JADE
centre-of-mass energies using the NNLO calculations is
= 0.1210 +/- 0.0007(stat.) +/- 0.0021(expt.) +/- 0.0044(had.)
+/- 0.0036(theo.) and with the NNLO+NLLA calculations the combined value is
= 0.1172 +/- 0.0006(stat.) +/- 0.0020(expt.) +/- 0.0035(had.) +/-
0.0030(theo.) . The stability of the NNLO and NNLO+NLLA results with respect to
missing higher order contributions, studied by variations of the
renormalisation scale, is improved compared to previous results obtained with
NLO+NLLA or with NLO predictions only. The observed energy dependence of
agrees with the QCD prediction of asymptotic freedom and excludes
absence of running with 99% confidence level.Comment: 9 pages, EPHJA style, 4 figures, corresponds to published version
with JADE author lis
Research Proposal for an Experiment to Search for the Decay {\mu} -> eee
We propose an experiment (Mu3e) to search for the lepton flavour violating
decay mu+ -> e+e-e+. We aim for an ultimate sensitivity of one in 10^16
mu-decays, four orders of magnitude better than previous searches. This
sensitivity is made possible by exploiting modern silicon pixel detectors
providing high spatial resolution and hodoscopes using scintillating fibres and
tiles providing precise timing information at high particle rates.Comment: Research proposal submitted to the Paul Scherrer Institute Research
Committee for Particle Physics at the Ring Cyclotron, 104 page
High-precision measurements from LHC to FCC-ee
This document provides a writeup of all contributions to the workshop on
"High precision measurements of : From LHC to FCC-ee" held at CERN,
Oct. 12--13, 2015. The workshop explored in depth the latest developments on
the determination of the QCD coupling from 15 methods where high
precision measurements are (or will be) available. Those include low-energy
observables: (i) lattice QCD, (ii) pion decay factor, (iii) quarkonia and (iv)
decays, (v) soft parton-to-hadron fragmentation functions, as well as
high-energy observables: (vi) global fits of parton distribution functions,
(vii) hard parton-to-hadron fragmentation functions, (viii) jets in p
DIS and -p photoproduction, (ix) photon structure function in
-, (x) event shapes and (xi) jet cross sections in
collisions, (xii) W boson and (xiii) Z boson decays, and (xiv) jets and (xv)
top-quark cross sections in proton-(anti)proton collisions. The current status
of the theoretical and experimental uncertainties associated to each extraction
method, the improvements expected from LHC data in the coming years, and future
perspectives achievable in collisions at the Future Circular Collider
(FCC-ee) with (1--100 ab) integrated luminosities yielding
10 Z bosons and jets, and 10 W bosons and leptons, are
thoroughly reviewed. The current uncertainty of the (preliminary) 2015 strong
coupling world-average value, = 0.1177 0.0013, is about
1\%. Some participants believed this may be reduced by a factor of three in the
near future by including novel high-precision observables, although this
opinion was not universally shared. At the FCC-ee facility, a factor of ten
reduction in the uncertainty should be possible, mostly thanks to
the huge Z and W data samples available.Comment: 135 pages, 56 figures. CERN-PH-TH-2015-299, CoEPP-MN-15-13. This
document is dedicated to the memory of Guido Altarell
Discovery potential of top-partners in a realistic composite Higgs model with early LHC data
Composite Higgs models provide a natural, non-supersymmetric solution to the
hierarchy problem. In these models, one or more sets of heavy top-partners are
typically introduced. Some of these new quarks can be relatively light, with a
mass of a few hundred GeV, and could be observed with the early LHC collision
data expected to be collected during 2010. We analyse in detail the collider
signatures that these new quarks can produce. We show that final states with
two (same-sign) or three leptons are the most promising discovery channels.
They can yield a 5 sigma excess over the Standard Model expectation already
with the 2010 LHC collision data. Exotic quarks of charge 5/3 are a distinctive
feature of this model. We present a new method to reconstruct their masses from
their leptonic decay without relying on jets in the final state.Comment: 28 pages 11 Figures 7 Tables, minor changes, added references,
matches published versio
Les Houches 2013: Physics at TeV Colliders: Standard Model Working Group Report
This Report summarizes the proceedings of the 2013 Les Houches workshop on
Physics at TeV Colliders. Session 1 dealt primarily with (1) the techniques for
calculating standard model multi-leg NLO and NNLO QCD and NLO EW cross sections
and (2) the comparison of those cross sections with LHC data from Run 1, and
projections for future measurements in Run 2.Comment: Proceedings of the Standard Model Working Group of the 2013 Les
Houches Workshop, Physics at TeV Colliders, Les houches 3-21 June 2013. 200
page
Measurement of the strong coupling alpha_S from the three-jet rate in e+e- - annihilation using JADE data
We present a measurement of the strong coupling alpha_S using the three-jet
rate measured with the Durham algorithm in e+e- -annihilation using data of the
JADE experiment at centre-of-mass energies between 14 and 44 GeV. Recent
theoretical improvements provide predictions of the three-jet rate in e+e-
-annihilation at next-to-next-to-leading order. In this paper a measurement of
the three-jet rate is used to determine the strong coupling alpha_s from a
comparison to next-to-next-to-leading order predictions matched with
next-to-leading logarithmic approximations and yields a value for the strong
coupling alpha_S(MZ) = 0.1199+- 0.0010 (stat.) +- 0.0021 (exp.) +- 0.0054
(had.) +- 0.0007 (theo.) consistent with the world average.Comment: 27 pages, 8 figure
Charged-Particle Multiplicity in Proton-Proton Collisions
This article summarizes and critically reviews measurements of
charged-particle multiplicity distributions and pseudorapidity densities in
p+p(pbar) collisions between sqrt(s) = 23.6 GeV and sqrt(s) = 1.8 TeV. Related
theoretical concepts are briefly introduced. Moments of multiplicity
distributions are presented as a function of sqrt(s). Feynman scaling, KNO
scaling, as well as the description of multiplicity distributions with a single
negative binomial distribution and with combinations of two or more negative
binomial distributions are discussed. Moreover, similarities between the energy
dependence of charged-particle multiplicities in p+p(pbar) and e+e- collisions
are studied. Finally, various predictions for pseudorapidity densities, average
multiplicities in full phase space, and multiplicity distributions of charged
particles in p+p(pbar) collisions at the LHC energies of sqrt(s) = 7 TeV, 10
TeV, and 14 TeV are summarized and compared.Comment: Invited review for Journal of Physics G -- version 2: version after
referee's comment
The Determination of alpha_s from Tau Decays Revisited
We revisit the determination of alpha_s(m_tau) using a fit to inclusive tau
hadronic spectral moments in light of (1) the recent calculation of the
fourth-order perturbative coefficient K_4 in the expansion of the Adler
function, (2) new precision measurements from BABAR of e+e- annihilation cross
sections, which decrease the uncertainty in the separation of vector and
axial-vector spectral functions, and (3) improved results from BABAR and Belle
on tau branching fractions involving kaons. We estimate that the fourth-order
perturbative prediction reduces the theoretical uncertainty, introduced by the
truncation of the series, by 20% with respect to earlier determinations. We
discuss to some detail the perturbative prediction and show that the effect of
the incomplete knowledge of the series is reduced by using the so-called
contour-improved calculation, as opposed to fixed-order perturbation theory
which manifests convergence problems. The corresponding theoretical
uncertainties are studied at the tau and Z mass scales. Nonperturbative
contributions extracted from the most inclusive fit are small, in agreement
with earlier determinations. Systematic effects from quark-hadron duality
violation are estimated with simple models and found to be within the quoted
systematic errors. The fit gives alpha_s(m_tau) = 0.344 +- 0.005 +- 0.007,
where the first error is experimental and the second theoretical. After
evolution to M_Z we obtain alpha_s(M_Z) = 0.1212 +- 0.0005 +- 0.0008 +- 0.0005,
where the errors are respectively experimental, theoretical and due to the
evolution. The result is in agreement with the corresponding NNNLO value
derived from essentially the Z width in the global electroweak fit. The
alpha_s(M_Z) determination from tau decays is the most precise one to date.Comment: 22 pages, 7 figure
- âŠ