5,121 research outputs found
Implementation of two-party protocols in the noisy-storage model
The noisy-storage model allows the implementation of secure two-party
protocols under the sole assumption that no large-scale reliable quantum
storage is available to the cheating party. No quantum storage is thereby
required for the honest parties. Examples of such protocols include bit
commitment, oblivious transfer and secure identification. Here, we provide a
guideline for the practical implementation of such protocols. In particular, we
analyze security in a practical setting where the honest parties themselves are
unable to perform perfect operations and need to deal with practical problems
such as errors during transmission and detector inefficiencies. We provide
explicit security parameters for two different experimental setups using weak
coherent, and parametric down conversion sources. In addition, we analyze a
modification of the protocols based on decoy states.Comment: 41 pages, 33 figures, this is a companion paper to arXiv:0906.1030
considering practical aspects, v2: published version, title changed in
accordance with PRA guideline
Cationic vacancy induced room-temperature ferromagnetism in transparent conducting anatase Ti_{1-x}Ta_xO_2 (x~0.05) thin films
We report room-temperature ferromagnetism in highly conducting transparent
anatase Ti1-xTaxO2 (x~0.05) thin films grown by pulsed laser deposition on
LaAlO3 substrates. Rutherford backscattering spectrometry (RBS), x-ray
diffraction (XRD), proton induced x-ray emission (PIXE), x-ray absorption
spectroscopy (XAS) and time-of-flight secondary ion mass spectrometry
(TOF-SIMS) indicated negligible magnetic contaminants in the films. The
presence of ferromagnetism with concomitant large carrier densities was
determined by a combination of superconducting quantum interference device
(SQUID) magnetometry, electrical transport measurements, soft x-ray magnetic
circular dichroism (SXMCD), XAS, and optical magnetic circular dichroism (OMCD)
and was supported by first-principle calculations. SXMCD and XAS measurements
revealed a 90% contribution to ferromagnetism from the Ti ions and a 10%
contribution from the O ions. RBS/channelling measurements show complete Ta
substitution in the Ti sites though carrier activation was only 50% at 5% Ta
concentration implying compensation by cationic defects. The role of Ti vacancy
and Ti3+ was studied via XAS and x-ray photoemission spectroscopy (XPS)
respectively. It was found that in films with strong ferromagnetism, the Ti
vacancy signal was strong while Ti3+ signal was absent. We propose (in the
absence of any obvious exchange mechanisms) that the localised magnetic
moments, Ti vacancy sites, are ferromagnetically ordered by itinerant carriers.
Cationic-defect-induced magnetism is an alternative route to ferromagnetism in
wide-band-gap semiconducting oxides without any magnetic elements.Comment: 21 pages, 10 figures, to appear in Philosophical Transaction - Royal
Soc.
Phase Separation and Magnetic Order in K-doped Iron Selenide Superconductor
Alkali-doped iron selenide is the latest member of high Tc superconductor
family, and its peculiar characters have immediately attracted extensive
attention. We prepared high-quality potassium-doped iron selenide (KxFe2-ySe2)
thin films by molecular beam epitaxy and unambiguously demonstrated the
existence of phase separation, which is currently under debate, in this
material using scanning tunneling microscopy and spectroscopy. The
stoichiometric superconducting phase KFe2Se2 contains no iron vacancies, while
the insulating phase has a \surd5\times\surd5 vacancy order. The iron vacancies
are shown always destructive to superconductivity in KFe2Se2. Our study on the
subgap bound states induced by the iron vacancies further reveals a
magnetically-related bipartite order in the superconducting phase. These
findings not only solve the existing controversies in the atomic and electronic
structures in KxFe2-ySe2, but also provide valuable information on
understanding the superconductivity and its interplay with magnetism in
iron-based superconductors
Observation of electron-antineutrino disappearance at Daya Bay
The Daya Bay Reactor Neutrino Experiment has measured a non-zero value for
the neutrino mixing angle with a significance of 5.2 standard
deviations. Antineutrinos from six 2.9 GW reactors were detected in
six antineutrino detectors deployed in two near (flux-weighted baseline 470 m
and 576 m) and one far (1648 m) underground experimental halls. With a 43,000
ton-GW_{\rm th}-day livetime exposure in 55 days, 10416 (80376) electron
antineutrino candidates were detected at the far hall (near halls). The ratio
of the observed to expected number of antineutrinos at the far hall is
. A rate-only analysis
finds in a
three-neutrino framework.Comment: 5 figures. Version to appear in Phys. Rev. Let
Measurement of the Total Cross Section for Hadronic Production by e+e- Annihilation at Energies between 2.6-5 Gev
Using the upgraded Beijing Spectrometer (BESII), we have measured the total
cross section for annihilation into hadronic final states at
center-of-mass energies of 2.6, 3.2, 3.4, 3.55, 4.6 and 5.0 GeV. Values of ,
, are determined.Comment: Submitted to Phys. Rev. Let
Search for the Lepton Flavor Violation Process at BESIII
We search for the lepton-flavor-violating decay of the into an
electron and a muon using events
collected with the BESIII detector at the BEPCII collider. Four candidate
events are found in the signal region, consistent with background expectations.
An upper limit on the branching fraction of (90% C.L.) is obtained
- …
