3,257 research outputs found
FBSDEs with time delayed generators:L-P-solutions, differentiability, representation formulas and path regularity
AbstractWe extend the work of Delong and Imkeller (2010)Â [6,7] concerning backward stochastic differential equations with time delayed generators (delay BSDEs). We give moment and a priori estimates in general Lp-spaces and provide sufficient conditions for the solution of a delay BSDE to exist in Lp. We introduce decoupled systems of SDEs and delay BSDEs (delay FBSDEs) and give sufficient conditions for their variational differentiability. We connect these variational derivatives to the Malliavin derivatives of delay FBSDEs via the usual representation formulas. We conclude with several path regularity results, in particular we extend the classic L2-path regularity to delay FBSDEs
Characterization of unicompositional GaInP2 ordering heterostructures grown by variation of V/III ratio
Journal ArticlePhotoluminescence (PL) and photoluminescence excitation (PLE) spectroscopies are employed to investigate single heterostructures based on two GaInP2 layers that have the same composition but different degrees of order on the cation sublattice. Four sample configurations are studied: two complementary single heterostructures, a more ordered layer grown on a less ordered layer and vice versa, and two single layers nominally equivalent to the constituent layers of the heterostructures. The degree of order of the two layers was controlled via the V/III ratio used during organometallic vapor phase epitaxial growth. From our measurements, the difference between the band gaps of the two layers is 20-30 meV. The PLE spectra show clearly that the emission comes from both layers of the heterostructures and that the PL is excited by direct absorption of the exciting light into each layer as well as the injection of carriers from the less ordered (higher band gap) layer into the more ordered (lower band gap) layer. The data clearly show that the heterostructures contain two layers, each very similar to the corresponding single layer sample
Recent Development in Clinical Applications of PD-1 and PD-L1 Antibodies for Cancer Immunotherapy
Antibodies against programmed death (PD) pathway are revolutionizing cancer immunotherapy. Currently five antibodies against PD-1/PD-L1 have been approved. The clinical use of these antibodies is rapidly expanding. Incorporation of PD antibodies into chemotherapy regimens is in active clinical investigations. The combination of pembrolizumab with carboplatin and pemetrexed has been approved for the first line therapy of metastatic non-squamous non-small cell lung cancer. Combination of PD-1/PD-L1 antibodies with small molecule inhibitors such as tyrosine kinase inhibitors and IDO inhibitors are in active clinical trials. This review summarized recent development in clinical trials of PD-1 and PD-L1 antibodies for cancer immunotherapy
Clinical Trials of CAR-T Cells in China
Novel immunotherapeutic agents targeting tumor-site microenvironment are revolutionizing cancer therapy. Chimeric antigen receptor (CAR)-engineered T cells are widely studied for cancer immunotherapy. CD19-specific CAR-T cells, tisagenlecleucel, have been recently approved for clinical application. Ongoing clinical trials are testing CAR designs directed at novel targets involved in hematological and solid malignancies. In addition to trials of single-target CAR-T cells, simultaneous and sequential CAR-T cells are being studied for clinical applications. Multi-target CAR-engineered T cells are also entering clinical trials. T cell receptor-engineered CAR-T and universal CAR-T cells represent new frontiers in CAR-T cell development. In this study, we analyzed the characteristics of CAR constructs and registered clinical trials of CAR-T cells in China and provided a quick glimpse of the landscape of CAR-T studies in China
Non-Fermi-liquid behavior in nearly ferromagnetic metallic SrIrO3 single crystals
We report transport and thermodynamic properties of single-crystal SrIrO3 as
a function of temperature T and applied magnetic field H. We find that SrIrO3
is a non-Fermi-liquid metal near a ferromagnetic instability, as characterized
by the following properties: (1) small ordered moment but no evidence for
long-range order down to 1.7 K; (2) strongly enhanced magnetic susceptibility
that diverges as T or T1/2 at low temperatures, depending on the applied field;
(3) heat capacity C(T,H) ~ -Tlog T that is readily amplified by low applied
fields; (4) a strikingly large Wilson ratio at T< 4K; and (5) a T3/2-dependence
of electrical resistivity over the range 1.7 < T < 120 K. A phase diagram based
on the data implies SrIrO3 is a rare example of a stoichiometric oxide compound
that exhibits non-Fermi-liquid behavior near a quantum critical point (T = 0
and H = 0.23 T)
REAL TIME PEDESTRIAN DETECTION-BASED FASTER HOG/DPM AND DEEP LEARNING APPROACH
International audienceThe work presented aims to show the feasibility of scientific and technological concepts in embedded vision dedicated to the extraction of image characteristics allowing the detection and the recognition/localization of objects. Object and pedestrian detection are carried out by two methods: 1. Classical image processing approach, which are improved with Histogram Oriented Gradient (HOG) and Deformable Part Model (DPM) based detection and pattern recognition. We present how we have improved the HOG/DPM approach to make pedestrian detection as a real time task by reducing calculation time. The developed approach allows us not only a pedestrian detection but also calculates the distance between pedestrians and vehicle. 2. Pedestrian detection based Artificial Intelligence (AI) approaches such as Deep Learning (DL). This work has first been validated on a closed circuit and subsequently under real traffic conditions through mobile platforms (mobile robot, drone and vehicles). Several tests have been carried out in the city center of Rouen in order to validate the platform developed
Ferromagnetic resonance in periodic particle arrays
We report measurements of the ferromagnetic resonance (FMR) spectra of arrays
of submicron size periodic particle arrays of permalloy produced by
electron-beam lithography. In contrast to plane ferromagnetic films, the
spectra of the arrays show a number of additional resonance peaks, whose
position depends strongly on the orientation of the external magnetic field and
the interparticle interaction. Time-dependent micromagnetic simulation of the
ac response show that these peaks are associated with coupled exchange and
dipolar spin wave modesComment: 4 pages, 4 figure
- …