16 research outputs found
Coupling changes in cell shape to chromosome segregation
Animal cells undergo dramatic changes in shape, mechanics and polarity as they progress through the different stages of cell division. These changes begin at mitotic entry, with cell–substrate adhesion remodelling, assembly of a cortical actomyosin network and osmotic swelling, which together enable cells to adopt a near spherical form even when growing in a crowded tissue environment. These shape changes, which probably aid spindle assembly and positioning, are then reversed at mitotic exit to restore the interphase cell morphology. Here, we discuss the dynamics, regulation and function of these processes, and how cell shape changes and sister chromatid segregation are coupled to ensure that the daughter cells generated through division receive their fair inheritance
OPTION HEDGING AND IMPLIED VOLATILITIES IN A STOCHASTIC VOLATILITY MODEL
In the stochastic volatility framework of Hull and White (1987), we characterize the so-called Black and Scholes implied volatility as a function of two arguments the ratio of the strike to the underlying asset price and the instantaneous value of the volatility By studying the variation m the first argument, we show that the usual hedging methods, through the Black and Scholes model, lead to an underhedged (resp. overhedged) position for in-the-money (resp out-of the-money) options, and a perfect partial hedged position for at the-money options These results are shown to be closely related to the "smile effect", which is proved to be a natural consequence of the stochastic volatility feature the deterministic dependence of the implied volatility on the underlying volatility process suggests the use of implied volatility data for the estimation of the parameters of interest A statistical procedure of filtering (of the latent volatility process) and estimation (of its parameters) is shown to be strongly consistent and asymptotically normal. Copyright 1996 Blackwell Publishers.