53 research outputs found

    Exploring the Levinthal limit in protein folding

    Get PDF
    According to the thermodynamic hypothesis, the native state of proteins is uniquely defined by their amino acid sequence. On the other hand, according to Levinthal, the native state is just a local minimum of the free energy and a given amino acid sequence, in the same thermodynamic conditions, can assume many, very different structures that are as thermodynamically stable as the native state. This is the Levinthal limit explored in this work. Using computer simulations, we compare the interactions that stabilize the native state of four different proteins with those that stabilize three non-native states of each protein and find that the nature of the interactions is very similar for all such 16 conformers. Furthermore, an enhancement of the degree of fluctuation of the non-native conformers can be explained by an insufficient relaxation to their local free energy minimum. These results favor Levinthal's hypothesis that protein folding is a kinetic non-equilibrium process.FCT - Foundation for Science and Technology, Portugal [UID/Multi/04326/2013]; Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); Conselho Nacional de Desenvolvimento Cientia co e Tecnologico (CNPq

    Concentration Dependent Ion Selectivity in VDAC: A Molecular Dynamics Simulation Study

    Get PDF
    The voltage-dependent anion channel (VDAC) forms the major pore in the outer mitochondrial membrane. Its high conducting open state features a moderate anion selectivity. There is some evidence indicating that the electrophysiological properties of VDAC vary with the salt concentration. Using a theoretical approach the molecular basis for this concentration dependence was investigated. Molecular dynamics simulations and continuum electrostatic calculations performed on the mouse VDAC1 isoform clearly demonstrate that the distribution of fixed charges in the channel creates an electric field, which determines the anion preference of VDAC at low salt concentration. Increasing the salt concentration in the bulk results in a higher concentration of ions in the VDAC wide pore. This event induces a large electrostatic screening of the charged residues promoting a less anion selective channel. Residues that are responsible for the electrostatic pattern of the channel were identified using the molecular dynamics trajectories. Some of these residues are found to be conserved suggesting that ion permeation between different VDAC species occurs through a common mechanism. This inference is buttressed by electrophysiological experiments performed on bean VDAC32 protein akin to mouse VDAC

    Selective abolishment of pyrimidine nucleoside kinase activity of herpes simplex virus type 1 thymidine kinase by mutation of alanine-167 to tyrosine.

    No full text
    Herpes simplex virus type 1 (HSV-1) encodes a thymidine kinase (TK) that markedly differs from mammalian nucleoside kinases in terms of substrate specificity. It recognizes both pyrimidine 2'-deoxynucleosides and a variety of purine nucleoside analogs. Based on a computer modeling study and in an attempt to modify this specificity, an HSV-1 TK mutant enzyme containing an alanine-to-tyrosine mutation at amino acid position 167 was constructed. Compared with wild-type HSV-1 TK, the purified mutant HSV-1 TK(A167Y) enzyme was heavily compromised in phosphorylating pyrimidine nucleosides such as (E)-5-(2-bromovinyl)-2'-deoxyuridine and the natural substrate dThd, whereas its ability to phosphorylate the purine nucleoside analogs ganciclovir (GCV) and lobucavir was only reduced approximately 2-fold. Moreover, a markedly decreased competition of natural pyrimidine nucleosides (i.e., thymidine) with purine nucleoside analogs for phosphorylation by HSV-1 TK(A167Y) was observed. Human osteosarcoma cells transduced with the wild-type HSV-1 TK gene were extremely sensitive to the cytostatic effects of antiherpetic pyrimidine [i.e., (E)-5-(2-bromovinyl)-2'-deoxyuridine] and purine (i.e., GCV) nucleoside analogs. Transduction with the HSV-1 TK(A167Y) gene sensitized the osteosarcoma cells to a variety of purine nucleoside analogs, whereas there was no measurable cytostatic activity of pyrimidine nucleoside analogs. The unique properties of the A167Y mutant HSV-1 TK may give this enzyme a therapeutic advantage in an in vivo setting due to the markedly reduced dThd competition with GCV for phosphorylation by the HSV-1 TK

    Characterization of multiple nuclear localization signals in herpes simplex virus type 1 thymidine kinase.

    No full text
    We have reported previously that the herpes simplex virus type 1 (HSV-1) thymidine kinase (TK) fused with green fluorescent protein (GFP) is localized in the nucleus of HSV-1 TK-GFP gene-transfected cells (Degrève et al. (1998) J. Virol. 72, 9535-9543). Deletion of the N-terminal 34 amino acids or selective mutation of the nonapeptide (25)RRTALRPRR(33), located in the N-terminal region of HSV-1 TK, resulted in the loss of the specific nuclear localization of HSV-1 TK. Utilizing information on the crystallographic structure of HSV-1 TK, we have now identified three additional putative nuclear localization signals and evaluated their potential role in the nuclear trafficking of HSV-1 TK by site-directed mutagenesis. We found that the sites containing the amino acids R236-R237 and K317-R318 are absolutely required for specific nuclear targeting of HSV-1 TK. The K317-R318 region, located at the interface between the two monomers in the dimeric HSV-1 TK structure, could act as a nuclear localization signal for monomeric HSV-1 TK. Alternatively, crystallographic data indicate that R318 might be essential for the formation of the TK dimer, and therefore it is required if HSV-1 TK is transported as a dimer

    Mutation of Gln125 to Asn selectively abolishes the thymidylate kinase activity of herpes simplex virus type 1 thymidine kinase.

    No full text
    The broad substrate specificity of herpes simplex virus type 1 (HSV-1) thymidine kinase (TK) has provided the basis for selective antiherpetic therapy and, more recently, suicide gene therapy for the treatment of cancer. We have now constructed an HSV-1 TK mutant enzyme, in which an asparagine (N) residue is substituted for glutamine (Q) at position 125, and have evaluated the effect of this amino acid change on enzymatic activity. In marked contrast with wild-type HSV-1 TK, which displays both thymidine kinase and thymidylate kinase activities, the HSV-1 TK(Q125N) mutant was unable to phosphorylate pyrimidine nucleoside monophosphates but retained significant phosphorylation activity for thymidine and a series of antiherpetic pyrimidine and purine nucleoside analogs. The abrogation of HSV-1 TK-associated thymidylate kinase activity resulted in a 100-fold accumulation of the monophosphate form of (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU) in osteosarcoma cells transfected with the HSV-1 TK(Q125N) gene compared with osteosarcoma cells expressing wild-type HSV-1 TK. BVDU monophosphate accumulation gave rise to a much greater inhibition of cellular thymidylate synthase in HSV-1 TK(Q125N) gene-transfected cells than wild-type HSV-1 TK gene-transfected osteosarcoma tumor cells without significantly changing the cytostatic potency of BVDU for the HSV-1 TK gene-transfected tumor cells. Accordingly, the presence of the Q125N mutation in HSV-1 TK gene-transfected tumor cells was found to result in a multilog decrease in the cytostatic activity of those pyrimidine nucleoside analogs that in their monophosphate form do not have marked affinity for thymidylate synthase [i.e., 1-beta-D-arabinofuranosylthymine and (E)-5-(2-bromovinyl)-1-beta-D-arabinofuranosyluracil]

    QUANTITATIVE ANALYSIS OF INTERMETALLIC PHASES IN Al-Li ALLOYS BY ELECTRON, ION AND NUCLEAR MICROPROBES

    No full text
    Conventional rnicroanalytical techniques (Optical Microscopy OM, Scanning Electron Microscopy SEM, Electron Probe Micro Analysis EPMA) were used in combination with new techniques (Secondary Ion Mass Spectrometry SIMS and Nuclear Microprobe NM) to visualise and identify unknown phases in ternary and quaternary Al-Li alloys. The limitations of each technique are compensated by the unique advantages of the others : spatial resolution, qualitative and quantitative analysis of light elements such as Li. Finally, the Nuclear Microprobe may be considered as a reference method by providing standard samples on which correction procedures for the quantitative analysis of light elements by conventional techniques (SEM and EPMA) can be tested and implemented

    Performance of nanofiltration membranes for solvent purification in the oil industry

    No full text
    The extraction stage of edible oil in the oil industry is commonly performed by using toxic solvents (e.g. hexane) and processes with high energy consumption (e.g. distillation, evaporation) to recover the solvent, which represents around 70-75 wt% in the oil-solvent mixture. In this paper, a membrane-based extraction method using nanofiltration (NF) membranes is presented. Commercial nanofiltration membranes made of different polymers (Desal-DK-polyamide NF from GE-osmonics®, NF30 polyethersulfone NF from Nadir®, STARMEMTM122 polyimide from MET ® and SOLSEP NF030306 silicone base polymer SOLESP ®) were selected and tested to recover the solvent from soybean oil/solvent (10-20-30% w/w oil) mixtures at various separation pressures and constant temperature in a dead-end filtration set up. The selection of the solvent was made in order to compare solvents obtainable from renewable resources, such as ethanol, iso-propanol and acetone, with solvents traditionally used in the industry (i.e. cyclohexane and n-hexane). The structural stability of the membranes towards the different solvents used in this work was verified visually, by the variation of the membrane area and by means of permeate flux assessments. Desal-DK and NF30 showed poor filtration performance and even visible defects after exposure to acetone but a good performance was obtained for the nanofiltration membranes STARMEM TM122 and SOLSEP NF030306 with ethanol, iso-propanol and acetone. For example, considering a mixture with 30% edible oil in acetone, STARMEM TM122 shows a flux and oil rejection of 16.8 L m-2h and 70%, respectively. For the same conditions, SOLSEP NF030306 exhibited a flux of 4.8 L m-2h with 78% rejection, which shows the potential application of nanofiltration membranes in the oil industry
    • …
    corecore