16,417 research outputs found

    Conversion of neutron stars to strange stars as the central engine of gamma-ray bursts

    Full text link
    We study the conversion of a neutron star to a strange star as a possible energy source for gamma-ray bursts. We use different recent models for the equation of state of neutron star matter and strange quark matter. We show that the total amount of energy liberated in the conversion is in the range of (1-4) 10^{53} ergs (one order of magnitude larger than previous estimates) and is in agreement with the energy required to power gamma-ray burst sources at cosmological distances.Comment: ApJ, 530, 2000 February 20, Lxxx (in press

    Super Rogers-Szeg\"o polynomials associated with BCNBC_N type of Polychronakos spin chains

    Full text link
    As is well known, multivariate Rogers-Szeg\"o polynomials are closely connected with the partition functions of the AN1A_{N-1} type of Polychronakos spin chains having long-range interactions. Applying the `freezing trick', here we derive the partition functions for a class of BCNBC_N type of Polychronakos spin chains containing supersymmetric analogues of polarized spin reversal operators and subsequently use those partition functions to obtain novel multivariate super Rogers-Szeg\"o (SRS) polynomials depending on four types of variables. We construct the generating functions for such SRS polynomials and show that these polynomials can be written as some bilinear combinations of the AN1A_{N-1} type of SRS polynomials. We also use the above mentioned generating functions to derive a set of recursion relations for the partition functions of the BCNBC_N type of Polychronakos spin chains involving different numbers of lattice sites and internal degrees of freedom.Comment: 33 pages, minor typos corrected, journal reference give

    On a Generalized Fifth-Order Integrable Evolution Equation and its Hierarchy

    Get PDF
    A general form of the fifth-order nonlinear evolution equation is considered. Helmholtz solution of the inverse variational problem is used to derive conditions under which this equation admits an analytic representation. A Lennard type recursion operator is then employed to construct a hierarchy of Lagrangian equations. It is explicitly demonstrated that the constructed system of equations has a Lax representation and two compatible Hamiltonian structures. The homogeneous balance method is used to derive analytic soliton solutions of the third- and fifth-order equations.Comment: 16 pages, 1 figur

    Impact of built-in fields and contact configuration on the characteristics of ultra-thin GaAs solar cells

    Full text link
    We discuss the effects of built-in fields and contact configuration on the photovoltaic characteristics of ultrathin GaAs solar cells. The investigation is based on advanced quantum-kinetic simulations reaching beyond the standard semi-classical bulk picture concerning the consideration of charge carrier states and dynamics in complex potential profiles. The thickness dependence of dark and photocurrent in the ultra-scaled regime is related to the corresponding variation of both, the built-in electric fields and associated modification of the density of states, and the optical intensity in the films. Losses in open-circuit voltage and short-circuit current due to leakage of electronically and optically injected carriers at minority carrier contacts are investigated for different contact configurations including electron and hole blocking barrier layers. The microscopic picture of leakage currents is connected to the effect of finite surface recombination velocities in the semi-classical description, and the impact of these non-classical contact regions on carrier generation and extraction is analyzed.Comment: 5 pages, 8 figure
    corecore