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1. Introduction

In recent years studies on fifth-order nonlinear evo-
lution equations have received considerable attention,
primarily because these equations possess many con-
nections with other integrable equations which play
a role in diverse areas of physics, ranging from non-
linear optics [1] to Bose-Einstein condensation [2].
For example, Ozer and Doken [3] used a multiple-
scale method to derive the fifth-order Korteweg-de
Vries (KdV) equation from the higher-order nonlin-
ear Schrodinger equation. On the other hand, a similar
method could also be used [4] to obtain the nonlinear
Schrodinger equation from fifth-order KdV flow [5],
Sawada-Kotera equation [6] and Kaup-Kupershmidt
equation [7].

Third-order evolution equations can often be solved
either by the use of an inverse spectral method or by
taking recourse to a simple change of variables. This
is true for both the linear dispersive KdV equation
and the nonlinear dispersive Rosenau-Hymann equa-
tion [8]. In contrast, it is quite difficult to obtain so-
lutions of the fifth-order equations. This might be an-
other point of interest for recent studies [9] on these
equations.

In this work we derive the conditions under
which the general fifth-order nonlinear evolution equa-

tions

Ut = Usx + AUz, + Bl + CUUy,
u=u(xt)

1)
admit an analytic representation [10] or follow from
a Lagrangian. Here A, B and C are constant model
parameters. The subscripts of u denote partial deriv-
atives wnith respect to that variable and, in particular,
Unx = % We use the fifth-order Lagrangian equation
to define an integrable hierarchy. Further, we provide a
Lax representation [5] and construct a bi-Hamiltonian
structure [11] for the system. The Lagrangian approach
to the nonlinear evolution equation has two novel fea-
tures. First, from the Lagrangians or Lagrangian densi-
ties we can construct Hamiltonian densities [12] which
form a set of involutive conserved densities of the sys-
tem. Second, the expression for the Lagrangian repre-
sents a useful basis to construct an approximate solu-
tion for the evolution equation [13, 14]. We shall, how-
ever, use a direct method [15] to obtain explicit analytic
soliton solutions.

In Section 2 we deal with the inverse variational
problem for (1) and derive relations between the model
parameters for the equation to be Lagrangian. We then
make use of an appropriate pseudo-differential opera-
tor to construct a hierarchy of equations and present
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results for the first few members of the hierarchy. In
Section 3 we find their Lax representations and exam-
ine the bi-Hamiltonian structure. The results presented
are expected to serve as a useful test of integrability.
In Section 4 we present explicit solitonic solutions by
using the homogeneous balance method (HB). In Sec-
tion 5 we present some concluding remarks.

2. Lagrangian System of Equations

In the calculus of variations one is concerned with
two types of problems, namely the direct and the in-
verse problem of Newtonian mechanics. The direct
problem is essentially the conventional one in which
one first assigns a Lagrangian and then computes the
equations of motion through Lagrange equations. As
opposed to this, the inverse problem begins with the
equation of motion and then constructs a Lagrangian
consistent with the variational principle [10]. The in-
verse problem of the calculus of variation was solved
by Helmholtz [16] at the end of the nineteenth cen-
tury. For continuum mechanics, the Helmholtz version
of the inverse problem proceeds by considering an r-
tuple of differentiable functions, written as

PV =P (x, v(“)) ed", 2

and then defining the so-called Fréchet derivative. The
Fréchet derivative of P is the differential operator Dp :
/% — /" and is given by

d

Dp(Q) =

| Pl+eQu ©

e=0

for any Q € 79 The Helmholtz condition asserts
that P is the Euler-Lagrange expression for some
variational problem if Dp is self-adjoint. When self-
adjointness is guaranteed, a Lagrangian density for P
can be explicitly constructed using the homotopy for-
mula

2N = /0 "VP[AVdA. )

In the following we shall demand the Helmholtz con-
dition to be valid for (1). This will provide us with cer-
tain constraints between the model parameters of (1) to
follow from a Lagrangian density.

A single evolution equation uy = PJu], u € R is never
the Euler-Lagrange equation of a variational prob-
lem [16]. One common trick to put a single evolution

equation into a variational form is to replace u by a
potential function:

U= —Wy, W=w(Xt). (5)

The function w is often called the Casimir potential. In
terms of the Casimir potential, (1) reads

Wy = P[Wy], (6)
where

P[wy] = Wex — ANxWiax — BWoxWax

+ CWiPWay. )
From (3) and (7) we obtain

Dp = Dgx — AWyxD4x — AWy Dx — BwoxDax ®

— BWayDoy + CWi? Doy + 2CWyWoy Dy

To construct the adjoint operator D}, of the above
Fréchet derivative we rewrite (8) as

Dp = Y Pj[wxD; 9)
]

and make use of the definition [16]

p=2,(-D)j-P, (10)
meaning that for any Qe o/
pQ= > (-D);[PQ. (11
i
This gives

D = Dgy — AWxDay — (3A— B)WayDx
— (4A—B)WoxDayx— (6A—2B)Wsx Doy (12)
+ CWZD 2y + 2CWiWioy Dy.

Demanding variational self-adjointness we obtain from
(8) and (12)

B =2A, (13)
while C remains unrestricted. Thus the nonlinear equa-
tion

Ut = Usy + AUUsy + 2AUxUpx + CU2UX (14)

forms a Lagrangian system. We note that the Lax equa-
tion [5] with A= 10, B =20 and C = 30 and the Ito
equation [17] with A= 3, B=6 and C = 2 are of
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the form (14), while the Sawada-Kotera equation with
A =B =C =5 and the Kaup-Kupershmidt equation
with A= 10, B= 25 and C = 20 are non-Lagrangian.

We now use the fifth-order Lagrangian equation (14)
to define an integrable hierarchy. To that end we intro-
duce a pseudo-differential or integro-differential op-
erator A which acts on a generic function f(x) to
give [18]

Af(X) = fux— puf (x) + quy +m dyf(y). (15)

Further, we introduce a function g§("> to follow from

At (x,t) =g, n=0,1,2.... (16)
Here gﬁn) is a polynomial in u and its x-derivatives (up
to derivative of order 2n). Using f(X) = ux(x,t) in (15),
we have

Af(x) = (uzX— mu2) . (17)
2 X
From (16) and (17)
A?Uy(X,1) = Usx — (2p+ Q) Uy
— (3p+ 40 uxtox (18)

+(p+q) (p+ g) Wuy.

Comparing (14) and (18) and identifying A 2ux(x,t) as
U, we can express p and g in terms of A. This allows
us to write

_ qy _ 3~
C=(p+0) (p+3) =15 (19)
Therefore, the general form of the fifth-order La-
grangian equation generated by A via (16) has the form

3A% ,
Ut = Usy + AUUzyx 4 2AUxUpx + WU Ux.
We have used (16) to generate a hierarchy of nonlin-
ear evolution equations for n=0,1,2,3 etc. The first
member of the hierarchy (n = 0) is a linear equation
given by

(20)

U = Uy, (21)

while the second one (n= 1) is a third-order nonlinear
equation

3A
U = Usx+ ?UU» (22)

9

The third member (n = 2) is obviously the fifth-order
equation given in (20). The corresponding seventh- and
ninth-order equations are given by

7A 21A
U = Uzx + ?USXU_F TU4XUX

7A?
+TAUs U+ o 5 U Ugy (23)
+ 4A2uu Ugx + 7A2u LE 7A3u3u
5 xU2x 10 X 50 X
and

9A 36A
Ut = Uogx + ?U7XU + TUGXUX
84A 126A
+ 5 UsyU2x + 5 UgxUszx
651A% ,  483A?

—50 UxUsy + —50

63A2 378A2
+ TUUZXU3X + TUUXUM
63A% , 63A3
u uuy
50 50
126A° , 1A%
TU UxUox + WU Usx
4
L 8A
1000

2
+ Ux u3x

(24)

+ Usx

+

3. Lax Representation and bi-Hamiltonian
Structure

Integrable nonlinear evolution equations admit zero
curvature or Lax representation [5]. These equations
are characterized by an infinite number of conserved
densities which are in involution. Moreover, each
number of the hierarchy has a bi-Hamiltonian struc-
ture [11]. In the following we demonstrate these three
important features for our equations in (20) — (24).

The Lax representation of nonlinear evolution equa-
tions is based on the algebra of differential operators.
Here one considers two linear operators L and M. The
eigenvalue equation for the operator L is given by

Ly =2y, (25)

where y is the eigenfunction and A is the corre-
sponding eigenvalue. The operator M characterizes the
change of eigenfunctions with the parameter t which,
in a nonlinear evolution equation, usually corresponds
to the time. The general form of this equation is

W = My (26)
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If we now invoke the basic result of the inverse spectral
method that % = 0 for non-zero eigenfunctions [19],
then (25) and (26) will immediately give

oL

ot
Equation (27) is called the Lax equation, and L and M
are called the Lax pairs. In the context of Lax’s method
it is often said that L defines the original spectral prob-
lem, while M represents an auxiliary spectral problem.
For a given nonlinear evolution equation one needs to
find these operators. This is not always a straightfor-
ward task. In fact, no systematic procedure has been
derived to determine whether a nonlinear partial dif-
ferential equation can be represented in the form (27).
We shall now find the Lax representation for the
hierarchy of equations given in (20)-(24). We first
note that, as one goes along the hierarchy, the original
spectral problem remains invariant, while the auxiliary
spectral problem goes on changing. Keeping this in

=M, L]. @7)
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iliary spectral problem, we postulate that for an evolu-
tion equation of the form u; = KJu] the terms in the
Fréchet derivative of K[u] contribute additively with
unequal weights to form the operator M such that L and
M via (22) reproduces K [u]. Of course, there should not
be any inconsistency in determining the values of the
weight factors. For (22) the Fréchet derivative of K[u]
can be obtained as

3A
DP = ai + ?(Uax + Ux). (29)
We shall, therefore, write
3A
Mz = ad> + 3 (buox + Cu) . (30)

Here the subscript 3 of M indicates that (30) represents
the second Lax operator for the third-order equation.
We shall follow this convention throughout. Equations
(22), (27), (28) and (30) can be combined to get a =4,
b=1and c= 3. Thus we have

mind, we take 3A 1
A Mz = 48§ + — (Udx + = Uy). (31)
L =02 28 5 2
o5 + + 0% (28)
In writing (28) we have exploited the similarity be-
tween (22) and the KdV equation. As regards the aux-
Similarly, we find the results
3A 3A 3A?
M5 = 1685 + 4Au33 + GAUXaZ + 5Au2xax + Zax + 7[]3)( + EUU)(, (32)
112A 4 42A2
My = 640! + === Ud3 + 56AUJ; + 84AUd: + ——— U2 + T0AU3,: + : = uuyd?
161A 147A2 7A3 63A 21A2
5 U4Xax + 7A UUZXax +—— 3 Zax 38)( O 5)( +— 10 UU3X (33)
- 2147 Uy Uy +- 2180 wu
5 IxU2x 100 X5
and
576A 51A 2016A 897A 4368A 2814A
|V|9 - 25689 87 2 7)( Xae 5 Gxax Tuzxai + TUSXa)Z(
4A 5061A2 546A2 3654A2
+ 1176Au3X84 e g + 252A2uxuzX82 ~e0 U3, 0x + = w29 + 55— Uilisdx
756A2 609A2 504A2 567A2 516A2
+ U0 + 126A2UU3,02 + o Upet 5 u2o; + 1o Wsct UUDs
2967A? 1743A2 189A3 44103 N 5, 5 21A3
+ 5—03 uu4xax 7530 UXU4X 102 u§+ 50 \ Zax+ 25 \ 38 + 1—00 U u3x (34)
+— 50 xa 10 UpxOx + —— 5 UxUox + - 1000 uox + 500 U~ Uyx.
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Zakharov and Faddeev [20] developed the Hamil-
tonian approach to integrability of nonlinear evolu-
tion equations in one spatial and one temporal (1+1)-
dimension and, in particular, Gardner [21] interpreted
the KdV equation as a completely integrable Hamil-
tonian system with oy as the relevant Hamiltonian op-
erator. A significant development in the Hamiltonian
theory is due to Magri [11], who realized that inte-
grable Hamiltonian systems have an additional struc-
ture. They are bi-Hamiltonian, i.e. they are Hamil-
tonian with respect to two different compatible Hamil-
tonian operators. The bi-Hamiltonian structure of the
integrable equation is based on a mathematical formu-
lation that does not make explicit reference to the La-
grangian of the equations in the hierarchy [22]. Here
we shall demonstrate that the bi-Hamiltonian structure
of the system of equations (20) - (24) can be realized
in terms of a set of Hamiltonian densities obtained
from the Lagrangians. Using (4), we can obtain the La-
grangian densities for our equations. In particular, we
have

1 1
Lr = Sk — W, (35)
1 1 A
L= 2Wt 2WXW3X + 10W3a (36)
1 1 W2
L5 = o WEWh — 5 WaWsx -+ 2 Wi Wax
A2 (37)
+ WX\N%X 40 V\é,
1 1 7A
L= ZWeWy — = WWrx + 7~ W W3,
2 2 10 38
A2 7A3 (38)
o e ""3W3X + 100"
and
1 1 w2
Ly = 2 WEWh — 5 WoWoy — — Wi, Wex
8A 9A 7A2
+ ?ng — EW W2 + EW‘Z‘X (39)
63A 21A3 21A4
* 200 200 W - 100 oo e 10000W§'

In the above, % is the Lagrangian density for the lin-
ear equation in (21). The other subscripts on . are
self-explanatory. The corresponding Hamiltonian den-
sities are given by

_12

Wi > u (40)

1
= Uy + (41)

3

= —u

=3 10’
A, A, A,
—UU4X+—U U2X+—UUX+ Eu

=5 3 6

(42)

2
% = 2UU6X+ 1OUU2X+ 40 U UX

+7A2u PUgx + Lo W,
20 U U2 100"

(43)

and

1 3A 8A .
M = 5 Uiy — Uy + U

2
9A , B3A%2 , ., TAZ ,

_ Az BA 44
10U 00 VU g%k (44

21A*

B 21A3 B !
100 10000

In the theory of Zakharov and Faddeev [20] and of
Gardner [21] the Hamiltonian form of an integrable
nonlinear evolution equation reads

o0
U = Ox (W)’

where j{” is the Hamiltonian densities of that equation.
Here 2 5y denotes the usual variational derivative written
as

(45)

5 i
5 & 5y

n>0 n

Un = (dx)"u (46)

Using the Hamiltonian densities in (40)—(44), one can
easily verify the Faddeev-Zakharov-Gardner equation
in (45) to yield the appropriate nonlinear equations
in (20)—(24). The bi-Hamiltonian form of evolution
equations is given by [11]

L (82 (8
w=a(252) =< (35
withm=2n+1, n=0,1,2,....In (47) the second

Hamiltonian operator is related to the recursion opera-
tor by [16]

(47)

From (15) and (48) we get
£=0+ %AuaxjL gux. (49)
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From (47) and (49) we have

_ a 5<%pm+2
— U bu

2A
= (ai + ?Uax +

A 8 (50)
§W>(§J)

For n= 1, (50) reads

(8
W—@<3ﬁ>

(3 2A A 5.4
= (8X+ ?uax+ §UX> (W) .

From (41), (42) and (51) one can easily obtain (20)
verifying the bi-Hamiltonian structure. Similar results
can also be checked for other pairs of the Hamiltonians
in (40) - (44).

(51)

4, Soliton Solution

We have just seen that the bi-Hamiltonian form (51)
corresponds to the fifth-order nonlinear equation in
(20). Here we shall make use of the homogeneous bal-
ance method (HB) [15] to construct an analytical ex-
pression for the soliton solution of this equation. Ac-
cording to the HB method, the field variable is first ex-
panded as

u(x,t) = i O (w(xt)), (52)
i=0

where the superscript (i) denotes the derivative index.

2

In particular, f(1) = a—\fv f@ = a—wfz and so on. Substi-
tuting (52) in (20) and balancing the contribution of the
linear term with that of the nonlinear terms, the expres-
sion in (52) becomes restricted to

u(x.t) = F AW + f Dy, (53)
where the subscripts of w stand for appropriate partial
derivatives. From (53) and (20) we have

(fD 4+ Af@£0) L 2Af3) £

3A2
+W(f(2))2f(3))w)7(

(54)

+ other terms involving lower powers of the partial
derivatives of w = 0. Setting the coefficient of w/ to

zero we get

fO L AF@£0) L 2Af () £

SR $(2)2503) —
+ =g (F9)°f 0.
If we try a solution of (55) in the form
f=oalnw, (56)
we immediately get
20
From (56) we can deduce the following results:
@56) — _ %M @) @) _ _* )
f(2) ol o 5"
2 (xz
@) 5@ = % )
(f )f 360
@@ — _ %56 (+@) = _% 46
(=551 (1) =5
F056) — _ %46
5 )
(f<2>)3_0‘_2f<6> (0@ _ % o)
120 60
2§06 — _ %46 10§04 — _%406)
12 ’ 8)
2 2
@) ) _ & 405
(@) 1% = 5.
2 az
W) §6) = & 05
() 19 =331,
W@ — _ %@ (@) = _%5@
O f < ,(f ) £4),

(f<1>)2:—af<2>.

Substituting (58) in the full form of (54), the latter is
reduced to a linear polynomial in @), £ . . (7).
If the coefficient of each f () is set equal to zero we get
a set of partial differential equations for w(x,t):

Wyt — Wy = 07 (593)

2W Wyt + We Wi + (2A0; — 35)WaxWax

(59b)
—i—(AOC — 21)W2XW5X — TwWyWex =0,
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2WW2 + (Aot — 42)Wawisy
+(11A0 — 210)WyWoyxWax

+(8A0r — 140)Wyw3,, (59¢)
3A%
+ | 16Aa — = 5-a® — 210 W3, Wayx = 0,
2
(48Aa — %az — 630)WyW3,
AZ
+(78Aa — %az — 1260)W2WoxWax (59d)
+(9Aa — 210)W2wiyy = 0,
2
<174A(x - lZTA o’ — 2520) WaW3,
A2 (59¢)
+ (48Aa - Eocz - 840) WeWsyx =0,
3A%
24A0 — -0 — 360 WaWoy = 0 (59f)
and
AZ
(24Aoc - 31—0052 - 360) w! = 0. (599)

Equation (59a) is a linear partial differential equa-
tion and can be converted to an ordinary differential
equation by substituting

W(xt) =g(x+wt) =g(2). (60)
Using (60) in (59a) we have
d®g d'g
Vd_z3 S 0. (61)

Here v is the velocity of the travelling wave represented
by w(x,t). Equation (61) can be solved to write

WX t) = g(x+t) = co+ cre VW (62)

where ¢g and c¢; are arbitrary constants. Using (56),
(57) and (62) in (53) we get the exact soliton solution
of the fifth-order equation in (20) and/or (51) in the
form

20 CoCyy/Ve VXV

us(x,t) = A (cg+ cre YWixrw))2”

(63)

A similar result for the third-order equation in (22) is
given by

20  cocpvevVxv)

Us(x,t) = (G + e TR (64)

The subscripts on u(x,t) are self-explanatory. It is of
interest to note that forc; =cg =1, A=10andv=
4K?, uz(x,t) in (64) becomes

uz(x,t) = 2Kk2sech? (xx+ 4K°t). (65)
From the inverse spectral method [23] for solving the
KdV equation, we know that k2 has a simple physical
meaning. For example —x? represents a discrete en-
ergy eigenvalue of the Schrddinger equation for the ini-
tial potential us(x,0). As in [9] we shall now examine
the spatial behaviour of us(x,t) at t = 0. For the sake
of simplicity we shall work with v =1. In Fig. 1 we
plot us(x,0) as function of x for different values of the
parameters cy and c;. All the curves in the figure are
of sech? shape, indicating that the solutions obtained
from (63) have indeed solitary wave properties. The
solid curve for co = 1 and c; = 1 is centred at the point
x = 0. If ¢y and c; are made unequal, the centre of the
soliton moves either to the left or to the right. In partic-
ular, for cg > c1, the shift of the centre is towards the
right, and we have a reverse situation for cy < ¢;. We
have displayed this property by using a dashed curve
with cross (cp = 4 and ¢; = 1) and a simple dashed
curve (o =1andc; =4).

5. Conclusion

Fifth-order nonlinear evolution equations, on the
one hand have many connections with other impor-
tant integrable equations and, on the other hand, can
not be solved by simple analytical methods. These two
points inspired us to construct a general fifth-order
equation which follows from a Lagrangian. It is of-
ten desirable that equations of mathematical physics
should be derivable from an action principle, because
a non-Lagrangian system does not allow one to carry
out a linear stability check [24] as well as to derive a
field theory [25] for particles described by its solutions.
The Lagrangian approach to nonlinear evolution equa-
tions is quite interesting because here one can derive all
physico-mathematical results from first principles [8].
Based on the fifth-order Lagrangian equation we de-
rived an integrable hierarchy. As a test of integrability
we provided a Lax representation and constructed two
compatible Hamiltoinan structures.

We treated the third- and fifth-order equations in the
hierarchy by the homogeneous balance method [15]
to obtain analytical results for soliton solutions. Ide-
ally, we could have tried the bi-linear method of Hirota
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0.5 T

0.45 -

04

0.35 -

0.3 -

0.25 -

us(x,0)

0.1

0.05 -

e T

Fig. 1. Variation of us(x,0) with x; cg = ¢; = 1: solid curve; ¢y > ¢;: dashed curve with cross; ¢y < c;: dashed curve.

[26] to deal with the problem because this method is
very convenient for finding single- and multi-soliton
solutions of nonlinear evolution equations. For higher-
order equations, the Hirota transformation often leads
to a multilinear representation [27]. This tends to pose
problems in solving the equations. The homogeneous
balance method, on the other hand, does not involve
any new mathematical complication as one moves
from lower- to higher-order equations. Admittedly, the
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