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1. Introduction

In recent years studies on fifth-order nonlinear evo-
lution equations have received considerable attention,
primarily because these equations possess many con-
nections with other integrable equations which play
a role in diverse areas of physics, ranging from non-
linear optics [1] to Bose-Einstein condensation [2].
For example, Özer and Döken [3] used a multiple-
scale method to derive the fifth-order Korteweg-de
Vries (KdV) equation from the higher-order nonlin-
ear Schrödinger equation. On the other hand, a similar
method could also be used [4] to obtain the nonlinear
Schrödinger equation from fifth-order KdV flow [5],
Sawada-Kotera equation [6] and Kaup-Kupershmidt
equation [7].

Third-order evolution equations can often be solved
either by the use of an inverse spectral method or by
taking recourse to a simple change of variables. This
is true for both the linear dispersive KdV equation
and the nonlinear dispersive Rosenau-Hymann equa-
tion [8]. In contrast, it is quite difficult to obtain so-
lutions of the fifth-order equations. This might be an-
other point of interest for recent studies [9] on these
equations.

In this work we derive the conditions under
which the general fifth-order nonlinear evolution equa-
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tions

ut = u5x + Auu3x + Buxu2x +Cu2ux,

u = u(x, t)
(1)

admit an analytic representation [10] or follow from
a Lagrangian. Here A, B and C are constant model
parameters. The subscripts of u denote partial deriv-
atives with respect to that variable and, in particular,

unx = ∂n
u

∂xn . We use the fifth-order Lagrangian equation
to define an integrable hierarchy. Further, we provide a
Lax representation [5] and construct a bi-Hamiltonian
structure [11] for the system. The Lagrangian approach
to the nonlinear evolution equation has two novel fea-
tures. First, from the Lagrangians or Lagrangian densi-
ties we can construct Hamiltonian densities [12] which
form a set of involutive conserved densities of the sys-
tem. Second, the expression for the Lagrangian repre-
sents a useful basis to construct an approximate solu-
tion for the evolution equation [13, 14]. We shall, how-
ever, use a direct method [15] to obtain explicit analytic
soliton solutions.

In Section 2 we deal with the inverse variational
problem for (1) and derive relations between the model
parameters for the equation to be Lagrangian. We then
make use of an appropriate pseudo-differential opera-
tor to construct a hierarchy of equations and present



8 A. Choudhuri et al. · Generalized Fifth-Order Integrable Evolution Equation

results for the first few members of the hierarchy. In
Section 3 we find their Lax representations and exam-
ine the bi-Hamiltonian structure. The results presented
are expected to serve as a useful test of integrability.
In Section 4 we present explicit solitonic solutions by
using the homogeneous balance method (HB). In Sec-
tion 5 we present some concluding remarks.

2. Lagrangian System of Equations

In the calculus of variations one is concerned with
two types of problems, namely the direct and the in-
verse problem of Newtonian mechanics. The direct
problem is essentially the conventional one in which
one first assigns a Lagrangian and then computes the
equations of motion through Lagrange equations. As
opposed to this, the inverse problem begins with the
equation of motion and then constructs a Lagrangian
consistent with the variational principle [10]. The in-
verse problem of the calculus of variation was solved
by Helmholtz [16] at the end of the nineteenth cen-
tury. For continuum mechanics, the Helmholtz version
of the inverse problem proceeds by considering an r-
tuple of differentiable functions, written as

P[v] = P
(

x,v(n)
)

ε A r, (2)

and then defining the so-called Fréchet derivative. The
Fréchet derivative of P is the differential operator D P :
A q → A r and is given by

DP(Q) =
d

dε

∣∣∣∣
ε=0

P[v+ ε Q[v]] (3)

for any Q ∈ A q. The Helmholtz condition asserts
that P is the Euler-Lagrange expression for some
variational problem if DP is self-adjoint. When self-
adjointness is guaranteed, a Lagrangian density for P
can be explicitly constructed using the homotopy for-
mula

L [v] =
∫ 1

0
vP[λ v]dλ . (4)

In the following we shall demand the Helmholtz con-
dition to be valid for (1). This will provide us with cer-
tain constraints between the model parameters of (1) to
follow from a Lagrangian density.

A single evolution equation ut = P[u], u∈R is never
the Euler-Lagrange equation of a variational prob-
lem [16]. One common trick to put a single evolution

equation into a variational form is to replace u by a
potential function:

u = −wx, w = w(x, t). (5)

The function w is often called the Casimir potential. In
terms of the Casimir potential, (1) reads

wxt = P[wx], (6)

where

P[wx] = w6x −Awxw4x −Bw2xw3x

+Cwx
2w2x.

(7)

From (3) and (7) we obtain

DP = D6x −AwxD4x −Aw4xDx −Bw2xD3x

−Bw3xD2x +Cwx
2D2x + 2Cwxw2xDx.

(8)

To construct the adjoint operator D∗
p of the above

Fréchet derivative we rewrite (8) as

DP = ∑
j

Pj[wx]D j (9)

and make use of the definition [16]

D∗
P = ∑(−D) j ·Pj, (10)

meaning that for any Qε A

D∗
PQ = ∑

j

(−D) j[PjQ]. (11)

This gives

D∗
P = D6x −AwxD4x − (3A−B)w4xDx

− (4A−B)w2xD3x−(6A−2B)w3xD2x

+Cw2
xD2x + 2Cwxw2xDx.

(12)

Demanding variational self-adjointness we obtain from
(8) and (12)

B = 2A, (13)

while C remains unrestricted. Thus the nonlinear equa-
tion

ut = u5x + Auu3x + 2Auxu2x +Cu2ux (14)

forms a Lagrangian system. We note that the Lax equa-
tion [5] with A = 10, B = 20 and C = 30 and the Ito
equation [17] with A = 3, B = 6 and C = 2 are of
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the form (14), while the Sawada-Kotera equation with
A = B = C = 5 and the Kaup-Kupershmidt equation
with A = 10, B = 25 and C = 20 are non-Lagrangian.

We now use the fifth-order Lagrangian equation (14)
to define an integrable hierarchy. To that end we intro-
duce a pseudo-differential or integro-differential op-
erator Λ which acts on a generic function f (x) to
give [18]

Λ f (x) = fxx − pu f (x)+ qux

∫ +∞

x
dy f (y). (15)

Further, we introduce a function g (n)
x to follow from

Λ nux(x, t) = g(n)
x , n = 0,1,2 . . . . (16)

Here g(n)
x is a polynomial in u and its x-derivatives (up

to derivative of order 2n). Using f (x) = ux(x,t) in (15),
we have

Λ f (x) =
(

u2x − p+ q
2

u2
)

x
. (17)

From (16) and (17)

Λ 2ux(x, t) = u5x − (2p+ q)uu3x

− (3p+ 4q)uxu2x

+(p+ q)
(

p+
q
2

)
u2ux.

(18)

Comparing (14) and (18) and identifying Λ 2ux(x, t) as
ut , we can express p and q in terms of A. This allows
us to write

C = (p+ q)
(

p+
q
2

)
=

3A2

10
. (19)

Therefore, the general form of the fifth-order La-
grangian equation generated by Λ via (16) has the form

ut = u5x + Auu3x + 2Auxu2x +
3A2

10
u2ux. (20)

We have used (16) to generate a hierarchy of nonlin-
ear evolution equations for n = 0,1,2,3 etc. The first
member of the hierarchy (n = 0) is a linear equation
given by

ut = ux, (21)

while the second one (n = 1) is a third-order nonlinear
equation

ut = u3x +
3A
5

uux. (22)

The third member (n = 2) is obviously the fifth-order
equation given in (20). The corresponding seventh- and
ninth-order equations are given by

ut = u7x +
7A
5

u5xu+
21A

5
u4xux

+ 7Au3xu2x +
7A2

10
u2u3x

+
14A2

5
uuxu2x +

7A2

10
ux

3 +
7A3

50
u3ux

(23)

and

ut = u9x +
9A
5

u7xu+
36A

5
u6xux

+
84A

5
u5xu2x +

126A
5

u4xu3x

+
651A2

50
uxu2

2x +
483A2

50
u2

xu3x

+
63A2

5
uu2xu3x +

378A2

50
uuxu4x

+
63A2

50
u2u5x +

63A3

50
uu3

x

+
126A3

50
u2uxu2x +

21A3

50
u3u3x

+
63A4

1000
u4ux.

(24)

3. Lax Representation and bi-Hamiltonian
Structure

Integrable nonlinear evolution equations admit zero
curvature or Lax representation [5]. These equations
are characterized by an infinite number of conserved
densities which are in involution. Moreover, each
number of the hierarchy has a bi-Hamiltonian struc-
ture [11]. In the following we demonstrate these three
important features for our equations in (20) – (24).

The Lax representation of nonlinear evolution equa-
tions is based on the algebra of differential operators.
Here one considers two linear operators L and M. The
eigenvalue equation for the operator L is given by

Lψ = λ ψ , (25)

where ψ is the eigenfunction and λ is the corre-
sponding eigenvalue. The operator M characterizes the
change of eigenfunctions with the parameter t which,
in a nonlinear evolution equation, usually corresponds
to the time. The general form of this equation is

ψt = Mψ . (26)
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If we now invoke the basic result of the inverse spectral
method that dλ

dt = 0 for non-zero eigenfunctions [19],
then (25) and (26) will immediately give

∂L
∂t

= [M,L]. (27)

Equation (27) is called the Lax equation, and L and M
are called the Lax pairs. In the context of Lax’s method
it is often said that L defines the original spectral prob-
lem, while M represents an auxiliary spectral problem.
For a given nonlinear evolution equation one needs to
find these operators. This is not always a straightfor-
ward task. In fact, no systematic procedure has been
derived to determine whether a nonlinear partial dif-
ferential equation can be represented in the form (27).

We shall now find the Lax representation for the
hierarchy of equations given in (20) – (24). We first
note that, as one goes along the hierarchy, the original
spectral problem remains invariant, while the auxiliary
spectral problem goes on changing. Keeping this in

mind, we take

L = ∂2
x +

A
10

u. (28)

In writing (28) we have exploited the similarity be-
tween (22) and the KdV equation. As regards the aux-

iliary spectral problem, we postulate that for an evolu-
tion equation of the form ut = K[u] the terms in the
Fréchet derivative of K[u] contribute additively with
unequal weights to form the operator M such that L and
M via (22) reproduces K[u]. Of course, there should not
be any inconsistency in determining the values of the
weight factors. For (22) the Fréchet derivative of K[u]
can be obtained as

DP = ∂3
x +

3A
5

(u∂x + ux). (29)

We shall, therefore, write

M3 = a∂3
x +

3A
5

(bu∂x + cux) . (30)

Here the subscript 3 of M indicates that (30) represents
the second Lax operator for the third-order equation.
We shall follow this convention throughout. Equations
(22), (27), (28) and (30) can be combined to get a = 4,
b = 1 and c = 1

2 . Thus we have

M3 = 4∂3
x +

3A
5

(u∂x +
1
2

ux). (31)

Similarly, we find the results

M5 = 16∂5
x + 4Au∂3

x + 6Aux∂2
x + 5Au2x∂x +

3A2

10
u2∂x +

3A
2

u3x +
3A2

10
uux, (32)

M7 = 64∂7
x +

112A
5

u∂5
x + 56Aux∂4

x + 84Au2x∂3
x +

14A2

5
u2∂3

x + 70Au3x∂2
x +

42A2

5
uux∂2

x

+
161A

5
u4x∂x + 7A2uu2x∂x +

147A2

30
u2

x∂x +
7A3

50
u3∂x +

63A
10

u5x +
21A2

10
uu3x

+
21A2

5
uxu2x +

21A3

100
u2ux,

(33)

and

M9 = 256∂9
x +

576A
5

u∂7
x +

51A
2

u7x +
2016A

5
ux∂6

x +
897A

5
u6x∂x +

4368A
5

u2x∂5
x +

2814A
5

u5x∂2
x

+ 1176Au3x∂4
x +

5124A
5

u4x∂3
x + 252A2uxu2x∂2

x +
5061A2

50
u2

2x∂x +
546A2

5
u2

x∂3
x +

3654A2

25
uxu3x∂x

+
756A2

5
uu2x∂3

x + 126A2uu3x∂2
x +

609A2

10
u2xu3x +

504A2

25
u2∂5

x +
567A2

10
uu5x +

516A2

5
uux∂4

x

+
2967A2

50
uu4x∂x +

1743A2

50
uxu4x +

189A3

100
u3

x +
441A3

50
uu2

x∂x +
42A3

25
u3∂3

x +
21A3

100
u2u3x

+
378A3

50
u2ux∂2

x +
63A3

10
u2u2x∂x +

189A3

25
uuxu2x +

63A4

1000
u4∂x +

63A4

500
u3ux.

(34)
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Zakharov and Faddeev [20] developed the Hamil-
tonian approach to integrability of nonlinear evolu-
tion equations in one spatial and one temporal (1+1)-
dimension and, in particular, Gardner [21] interpreted
the KdV equation as a completely integrable Hamil-
tonian system with ∂x as the relevant Hamiltonian op-
erator. A significant development in the Hamiltonian
theory is due to Magri [11], who realized that inte-
grable Hamiltonian systems have an additional struc-
ture. They are bi-Hamiltonian, i. e. they are Hamil-
tonian with respect to two different compatible Hamil-
tonian operators. The bi-Hamiltonian structure of the
integrable equation is based on a mathematical formu-
lation that does not make explicit reference to the La-
grangian of the equations in the hierarchy [22]. Here
we shall demonstrate that the bi-Hamiltonian structure
of the system of equations (20) – (24) can be realized
in terms of a set of Hamiltonian densities obtained
from the Lagrangians. Using (4), we can obtain the La-
grangian densities for our equations. In particular, we
have

L1 =
1
2

wt wx − 1
2

w2
x , (35)

L3 =
1
2

wt wx − 1
2

wxw3x +
A
10

w3
x , (36)

L5 =
1
2

wt wx − 1
2

wxw5x +
A
3

w2
xw3x

+
A
6

wxw2
2x −

A2

40
w4

x ,

(37)

L7 =
1
2

wtwx − 1
2

wxw7x +
7A
10

wxw2
3x

− 7A2

40
w2

xw2
2x −

7A2

40
w3

xw3x +
7A3

1000
w5

x ,

(38)

and

L9 =
1
2

wtwx − 1
2

wxw9x − 3A
5

w2
2xw5x

+
8A
5

w3
3x −

9A
10

wxw2
4x +

7A2

40
w4

2x

+
63A2

200
w2

xw2
3x −

21A3

100
w3

xw2
2x −

21A4

10000
w6

x .

(39)

In the above, L1 is the Lagrangian density for the lin-
ear equation in (21). The other subscripts on L are
self-explanatory. The corresponding Hamiltonian den-
sities are given by

H1 =
1
2

u2, (40)

H3 =
1
2

uu2x +
A
10

u3, (41)

H5 =
1
2

uu4x +
A
3

u2u2x +
A
6

uu2
x +

A2

40
u4, (42)

H7 = 1
2 uu6x + 7A

10 uu2
2x + 7A2

40 u2u2
x

+
7A2

40
u3u2x +

7A3

1000
u5,

(43)

and

H9 =
1
2

uu8x − 3A
5

u2
xu4x +

8A
5

u3
2x

− 9A
10

uu2
3x −

63A2

200
u2u2

2x −
7A2

40
u4

x

− 21A3

100
u3u2

x +
21A4

10000
u6.

(44)

In the theory of Zakharov and Faddeev [20] and of
Gardner [21] the Hamiltonian form of an integrable
nonlinear evolution equation reads

ut = ∂x

(
δH

δu

)
, (45)

where H is the Hamiltonian densities of that equation.
Here δ

δu denotes the usual variational derivative written
as

δ
δu

= ∑
n≥0

(−∂x)n ∂
∂un

, un = (∂x)nu. (46)

Using the Hamiltonian densities in (40) – (44), one can
easily verify the Faddeev-Zakharov-Gardner equation
in (45) to yield the appropriate nonlinear equations
in (20) – (24). The bi-Hamiltonian form of evolution
equations is given by [11]

ut = ∂x

(
δHm+2

δu

)
= E

(
δHm

δu

)
(47)

with m = 2n + 1, n = 0,1,2, . . . . In (47) the second
Hamiltonian operator is related to the recursion opera-
tor by [16]

E = Λ∂x. (48)

From (15) and (48) we get

E = ∂3
x +

2A
5

u∂x +
A
5

ux. (49)
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From (47) and (49) we have

ut = ∂x

(
δHm+2

δu

)

=
(

∂3
x +

2A
5

u∂x +
A
5

ux

)(
δHm

δu

)
.

(50)

For n = 1, (50) reads

ut = ∂x

(
δH5

δu

)

=
(

∂3
x +

2A
5

u∂x +
A
5

ux

)(
δH3

δu

)
.

(51)

From (41), (42) and (51) one can easily obtain (20)
verifying the bi-Hamiltonian structure. Similar results
can also be checked for other pairs of the Hamiltonians
in (40) – (44).

4. Soliton Solution

We have just seen that the bi-Hamiltonian form (51)
corresponds to the fifth-order nonlinear equation in
(20). Here we shall make use of the homogeneous bal-
ance method (HB) [15] to construct an analytical ex-
pression for the soliton solution of this equation. Ac-
cording to the HB method, the field variable is first ex-
panded as

u(x, t) =
N

∑
i=0

f (i)(w(x,t)), (52)

where the superscript (i) denotes the derivative index.

In particular, f (1) = ∂ f
∂w

, f (2) = ∂2
f

∂w2 and so on. Substi-
tuting (52) in (20) and balancing the contribution of the
linear term with that of the nonlinear terms, the expres-
sion in (52) becomes restricted to

u(x, t) = f (2)w2
x + f (1)w2x, (53)

where the subscripts of w stand for appropriate partial
derivatives. From (53) and (20) we have

( f (7) + A f (2) f (5) + 2A f (3) f (4)

+
3A2

10
( f (2))2 f (3))w7

x

(54)

+ other terms involving lower powers of the partial
derivatives of w = 0. Setting the coefficient of w7

x to

zero we get

f (7) + A f (2) f (5) + 2A f (3) f (4)

+
3A2

10
( f (2))2 f (3) = 0.

(55)

If we try a solution of (55) in the form

f = α lnw, (56)

we immediately get

α =
20
A

. (57)

From (56) we can deduce the following results:

f (2) f (5) = − α
30

f (7), f (3) f (4) = − α
60

f (7),

(
f (2)

)2
f (3) =

α2

360
f (7),

f (2) f (4) = − α
20

f (6),
(

f (3)
)2

= − α
30

f (6),

f (1) f (5) = −α
5

f (6),

(
f (2)

)3
=

α2

120
f (6), f (1) f (2) f (3) =

α2

60
f (6),

f (2) f (3) = − α
12

f (5), f (1) f (4) = −α
4

f (5),

(
f (2)

)2
f (1) =

α2

24
f (5),

(
f (1)

)2
f (3) =

α2

12
f (5),

f (1) f (3) = −α
3

f (4),
(

f (2)
)2

= −α
6

f (4),

(
f (1)

)2
f (2) =

α2

6
f (4),

f (1) f (2) = −α
2

f (3),
(

f (1)
)3

=
α2

2
f (3),

(
f (1)

)2
= −α f (2).

(58)

Substituting (58) in the full form of (54), the latter is
reduced to a linear polynomial in f (1), f (2), . . . , f (7).
If the coefficient of each f (i) is set equal to zero we get
a set of partial differential equations for w(x, t):

wxxt −w7x = 0, (59a)

2wxwxt + wtwxt +(2Aα −35)w3xw4x

+(Aα −21)w2xw5x −7wxw6x = 0,
(59b)
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2wtw
2
x +(Aα −42)w2

xw5x

+(11Aα −210)wxw2xw4x

+(8Aα −140)wxw2
3x

+
(

16Aα − 3A2

10
α2 −210

)
w2

2xw3x = 0,

(59c)

(48Aα − 9A2

10
α2 −630)wxw3

2x

+(78Aα − 3A2

5
α2 −1260)w2

xw2xw3x

+(9Aα −210)w3
xw4x = 0,

(59d)

(
174Aα − 12A2

5
α2 −2520

)
w3

xw2
2x

+
(

48Aα − 3A2

10
α2 −840

)
w4

xw3x = 0,

(59e)

(
24Aα − 3A2

10
α2 −360

)
w5

xw2x = 0 (59f)

and (
24Aα − 3A2

10
α2 −360

)
w7

x = 0. (59g)

Equation (59a) is a linear partial differential equa-
tion and can be converted to an ordinary differential
equation by substituting

w(x, t) = g(x+ vt) = g(z). (60)

Using (60) in (59a) we have

v
d3g
dz3 − d7g

dz7 = 0. (61)

Here v is the velocity of the travelling wave represented
by w(x, t). Equation (61) can be solved to write

w(x, t) = g(x+ vt) = c0 + c1e
4√v(x+vt), (62)

where c0 and c1 are arbitrary constants. Using (56),
(57) and (62) in (53) we get the exact soliton solution
of the fifth-order equation in (20) and/or (51) in the
form

u5(x, t) =
20
A

c0c1
√

ve
4√v(x+vt)

(c0 + c1e 4√v(x+vt))2
. (63)

A similar result for the third-order equation in (22) is
given by

u3(x, t) =
20
A

c0c1ve
√

v(x+vt)

(c0 + c1e
√

v(x+vt))2
. (64)

The subscripts on u(x, t) are self-explanatory. It is of
interest to note that for c1 = c0 = 1, A = 10 and v =
4κ2, u3(x, t) in (64) becomes

u3(x, t) = 2κ2sech2(κx+ 4κ3t). (65)

From the inverse spectral method [23] for solving the
KdV equation, we know that κ 2 has a simple physical
meaning. For example −κ 2 represents a discrete en-
ergy eigenvalue of the Schrödinger equation for the ini-
tial potential u3(x,0). As in [9] we shall now examine
the spatial behaviour of u5(x, t) at t = 0. For the sake
of simplicity we shall work with v = 1. In Fig. 1 we
plot u5(x,0) as function of x for different values of the
parameters c0 and c1. All the curves in the figure are
of sech2 shape, indicating that the solutions obtained
from (63) have indeed solitary wave properties. The
solid curve for c0 = 1 and c1 = 1 is centred at the point
x = 0. If c0 and c1 are made unequal, the centre of the
soliton moves either to the left or to the right. In partic-
ular, for c0 > c1, the shift of the centre is towards the
right, and we have a reverse situation for c0 < c1. We
have displayed this property by using a dashed curve
with cross (c0 = 4 and c1 = 1) and a simple dashed
curve (c0 = 1 and c1 = 4).

5. Conclusion

Fifth-order nonlinear evolution equations, on the
one hand have many connections with other impor-
tant integrable equations and, on the other hand, can
not be solved by simple analytical methods. These two
points inspired us to construct a general fifth-order
equation which follows from a Lagrangian. It is of-
ten desirable that equations of mathematical physics
should be derivable from an action principle, because
a non-Lagrangian system does not allow one to carry
out a linear stability check [24] as well as to derive a
field theory [25] for particles described by its solutions.
The Lagrangian approach to nonlinear evolution equa-
tions is quite interesting because here one can derive all
physico-mathematical results from first principles [8].
Based on the fifth-order Lagrangian equation we de-
rived an integrable hierarchy. As a test of integrability
we provided a Lax representation and constructed two
compatible Hamiltoinan structures.

We treated the third- and fifth-order equations in the
hierarchy by the homogeneous balance method [15]
to obtain analytical results for soliton solutions. Ide-
ally, we could have tried the bi-linear method of Hirota
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Fig. 1. Variation of u5(x,0) with x; c0 = c1 = 1: solid curve; c0 > c1: dashed curve with cross; c0 < c1: dashed curve.

[26] to deal with the problem because this method is
very convenient for finding single- and multi-soliton
solutions of nonlinear evolution equations. For higher-
order equations, the Hirota transformation often leads
to a multilinear representation [27]. This tends to pose
problems in solving the equations. The homogeneous
balance method, on the other hand, does not involve
any new mathematical complication as one moves
from lower- to higher-order equations. Admittedly, the

algebra becomes more and more involved as we go up
the ladder inside the hierarchy. The symbolic compu-
tations like Maple and Mathematica can be used to cir-
cumvent algebraic complications.
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