7,957 research outputs found
Quantum state transfer in arrays of flux qubits
In this work, we describe a possible experimental realization of Bose's idea
to use spin chains for short distance quantum communication [S. Bose, {\it
Phys. Rev. Lett.} {\bf 91} 207901]. Josephson arrays have been proposed and
analyzed as transmission channels for systems of superconducting charge qubits.
Here, we consider a chain of persistent current qubits, that is appropriate for
state transfer with high fidelity in systems containing flux qubits. We
calculate the fidelity of state transfer for this system. In general, the
Hamiltonian of this system is not of XXZ-type, and we analyze the magnitude and
the effect of the terms that don't conserve the z-component of the total spin.Comment: 10 pages, 8 figure
Measurements of the ClO radical vibrational band intensity and the ClO + ClO + M reaction product
There is considerable interest in the kinetics and concentrations of free radicals in the stratosphere. Chlorine monoxide is a critically important radical because of its role in catalytic cycles for ozone depletion. Depletion occurs under a wide variety of conditions including the Antarctic spring when unusual mechanisms such as the BrO sub x/ClO sub x, ClO dimer (Cl sub 2 O sub 2), and ClO sub x/HO sub x cycles are suggested to operate. Infrared spectroscopy is one of the methods used to measure ClO in the stratosphere (Menzies 1979 and 1983; Mumma et al., 1983). To aid the quantification of such infrared measurements, researchers measured the ClO ground state fundamental band intensity
Horava-Lifshitz Cosmology: A Review
This article reviews basic construction and cosmological implications of a
power-counting renormalizable theory of gravitation recently proposed by
Horava. We explain that (i) at low energy this theory does not exactly recover
general relativity but instead mimic general relativity plus dark matter; that
(ii) higher spatial curvature terms allow bouncing and cyclic universes as
regular solutions; and that (iii) the anisotropic scaling with the dynamical
critical exponent z=3 solves the horizon problem and leads to scale-invariant
cosmological perturbations even without inflation. We also comment on issues
related to an extra scalar degree of freedom called scalar graviton. In
particular, for spherically-symmetric, static, vacuum configurations we prove
non-perturbative continuity of the lambda->1+0 limit, where lambda is a
parameter in the kinetic action and general relativity has the value lambda=1.
We also derive the condition under which linear instability of the scalar
graviton does not show up.Comment: 28 pages, invited review for CQG; version to be published (v2
Upper critical field and de Haas-van Alphen oscillations in KOsO measured in a hybrid magnet
Magnetic torque measurements have been performed on a KOsO single
crystal in magnetic fields up to 35.3 T and at temperatures down to 0.6 K. The
upper critical field is determined to be 30 T. De Haas-van Alphen
oscillations are observed. A large mass enhancement of (1+) = = 7.6 is found. It is suggested that, for the large upper critical
field to be reconciled with Pauli paramagnetic limiting, the observed mass
enhancement must be of electron-phonon origin for the most part.Comment: 4 pages, 4 figures, published versio
On the Renormalizability of Horava-Lifshitz-type Gravities
In this note, we discuss the renormalizability of Horava-Lifshitz-type
gravity theories. Using the fact that Horava-Lifshitz gravity is very closely
related to the stochastic quantization of topologically massive gravity, we
show that the renormalizability of HL gravity only depends on the
renormalizability of topologically massive gravity. This is a consequence of
the BRST and time-reversal symmetries pertinent to theories satisfying the
detailed balance condition.Comment: 13 pages, references added, typos fixe
Equilibrium properties of a Josephson junction ladder with screening effects
In this paper we calculate the ground state phase diagram of a Josephson
Junction ladder when screening field effects are taken into account. We study
the ground state configuration as a function of the external field, the
penetration depth and the anisotropy of the ladder, using different
approximations to the calculation of the induced fields. A series of tongues,
characterized by the vortex density , is obtained. The vortex density
of the ground state, as a function of the external field, is a Devil's
staircase, with a plateau for every rational value of . The width of
each of these steps depends strongly on the approximation made when calculating
the inductance effect: if the self-inductance matrix is considered, the
phase tends to occupy all the diagram as the penetration depth
decreases. If, instead, the whole inductance matrix is considered, the width of
any step tends to a non-zero value in the limit of very low penetration depth.
We have also analyzed the stability of some simple metastable phases: screening
fields are shown to enlarge their stability range.Comment: 16 pp, RevTex. Figures available upon request at
[email protected] To be published in Physical Review B (01-Dec-96
Superconductivity in a layered cobalt oxyhydrate NaCoO1.3HO
We report the electrical, magnetic and thermal measurements on a layered
cobalt oxyhydrate NaCoO1.3HO. Bulk superconductivity
at 4.3 K has been confirmed, however, the measured superconducting fraction is
relatively low probably due to the sample's intrinsic two-dimensional
characteristic. The compound exhibits weak-coupled and extreme type-II
superconductivity with the average energy gap and the
Ginzburg-Landau parameter of 0.50 meV and 140,
respectively. The normalized electronic specific heat data in the
superconducting state well fit the dependence, suggesting point nodes
for the superconducting gap structure.Comment: 4 pages, 3 figure
Core pinning by intragranular nanoprecipitates in polycrystalline MgCNi_3
The nanostructure and magnetic properties of polycrystalline MgCNi_3 were
studied by x-ray diffraction, electron microscopy, and vibrating sample
magnetometry. While the bulk flux-pinning force curve F_p(H) indicates the
expected grain-boundary pinning mechanism just below T_c = 7.2 K, a systematic
change to pinning by a nanometer-scale distribution of core pinning sites is
indicated by a shift of F_p(H) with decreasing temperature. The lack of scaling
of F_p(H) suggests the presence of 10 to 20% of nonsuperconducting regions
inside the grains, which are smaller than the diameter of fluxon cores 2xi at
high temperature and become effective with decreasing temperature when xi(T)
approaches the nanostructural scale. Transmission electron microscopy revealed
cubic and graphite nanoprecipitates with 2 to 5 nm size, consistent with the
above hypothesis since xi(0) = 6 nm. High critical current densities, more than
10^6 A/cm^2 at 1 T and 4.2 K, were obtained for grain colonies separated by
carbon. Dirty-limit behavior seen in previous studies may be tied to electron
scattering by the precipitates, indicating the possibility that strong core
pinning might be combined with a technologically useful upper critical field if
versions of MgCNi_3 with higher T_c can be found.Comment: 5 pages, 6 figures, submitted to PR
Combining the Hybrid Functional Method with Dynamical Mean-Field Theory
We present a new method to compute the electronic structure of correlated
materials combining the hybrid functional method with the dynamical mean-field
theory. As a test example of the method we study cerium sesquioxide, a strongly
correlated Mott-band insulator. The hybrid functional part improves the
magnitude of the pd-band gap which is underestimated in the standard
approximations to density functional theory while the dynamical mean-field
theory part splits the 4f-electron spectra into a lower and an upper Hubbard
band.Comment: 5 pages, 2 figures, replaced with revised version, published in
Europhys. Let
- …
