5,172 research outputs found

    The Mutual Orbit, Mass, and Density of the Large Transneptunian Binary System Varda and Ilmar\"e

    Full text link
    From observations by the Hubble Space Telescope, Keck II Telescope, and Gemini North Telescope, we have determined the mutual orbit of the large transneptunian object (174567) Varda and its satellite Ilmar\"e. These two objects orbit one another in a highly inclined, circular or near-circular orbit with a period of 5.75 days and a semimajor axis of 4810 km. This orbit reveals the system mass to be (2.664 +/- 0.064) x 10^20 kg, slightly greater than the mass of the second most massive main-belt asteroid (4) Vesta. The dynamical mass can in turn be combined with estimates of the surface area of the system from Herschel Space Telescope thermal observations to estimate a bulk density of 1.24 +0.50 -0.35 g cm^-3. Varda and Ilmar\"e both have colors similar to the combined colors of the system, B-V = 0.886 +/- 0.025 and V-I = 1.156 +/- 0.029.Comment: 16 pages, 4 tables, 6 figures, in press in Icaru

    High-excitation OH and H_2O lines in Markarian 231: the molecular signatures of compact far-infrared continuum sources

    Full text link
    The ISO/LWS far-infrared spectrum of the ultraluminous galaxy Mkn 231 shows OH and H_2O lines in absorption from energy levels up to 300 K above the ground state, and emission in the [O I] 63 micron and [C II] 158 micron lines. Our analysis shows that OH and H_2O are radiatively pumped by the far-infrared continuum emission of the galaxy. The absorptions in the high-excitation lines require high far-infrared radiation densities, allowing us to constrain the properties of the underlying continuum source. The bulk of the far-infrared continuum arises from a warm (T_dust=70-100 K), optically thick (tau_100micron=1-2) medium of effective diameter 200-400 pc. In our best-fit model of total luminosity L_IR, the observed OH and H2O high-lying lines arise from a luminous (L/L_IR~0.56) region with radius ~100 pc. The high surface brightness of this component suggests that its infrared emission is dominated by the AGN. The derived column densities N(OH)>~10^{17} cm^{-2} and N(H_2O)>~6x10^{16} cm^{-2} may indicate XDR chemistry, although significant starburst chemistry cannot be ruled out. The lower-lying OH, [C II] 158 micron, and [O I] 63 micron lines arise from a more extended (~350 pc) starburst region. We show that the [C II] deficit in Mkn 231 is compatible with a high average abundance of C+ because of an extreme overall luminosity to gas mass ratio. Therefore, a [C II] deficit may indicate a significant contribution to the luminosity by an AGN, and/or by extremely efficient star formation.Comment: 16 pages, 6 figures, accepted for publication in The Astrophysical Journa

    Ice mineralogy across and into the surfaces of Pluto, Triton, and Eris

    Get PDF
    We present three near-infrared spectra of Pluto taken with the Infrared Telescope Facility and SpeX, an optical spectrum of Triton taken with the MMT and the Red Channel Spectrograph, and previously published spectra of Pluto, Triton, and Eris. We combine these observations with a two-phase Hapke model and gain insight into the ice mineralogy on Pluto, Triton, and Eris. Specifically, we measure the methane-nitrogen mixing ratio across and into the surfaces of these icy dwarf planets. In addition, we present a laboratory experiment that demonstrates it is essential to model methane bands in spectra of icy dwarf planets with two methane phases—one highly diluted by nitrogen and the other rich in methane. For Pluto, we find bulk, hemisphere-averaged, methane abundances of 9.1% ± 0.5%, 7.1% ± 0.4%, and 8.2% ± 0.3% for sub-Earth longitudes of 10°, 125°, and 257°. Application of the Wilcoxon rank sum test to our measurements finds these small differences are statistically significant. For Triton, we find bulk, hemisphere-averaged, methane abundances of 5.0% ± 0.1% and 5.3% ± 0.4% for sub-Earth longitudes of 138° and 314°. Application of the Wilcoxon rank sum test to our measurements finds the differences are not statistically significant. For Eris, we find a bulk, hemisphere-averaged, methane abundance of 10% ± 2%. Pluto, Triton, and Eris do not exhibit a trend in methane-nitrogen mixing ratio with depth into their surfaces over the few centimeter range probed by these observations. This result is contrary to the expectation that since visible light penetrates deeper into a nitrogen-rich surface than the depths from which thermal emission emerges, net radiative heating at depth would drive preferential sublimation of nitrogen leading to an increase in the methane abundance with depth

    Material condition assessment with eddy current sensors

    Get PDF
    Eddy current sensors and sensor arrays are used for process quality and material condition assessment of conducting materials. In an embodiment, changes in spatially registered high resolution images taken before and after cold work processing reflect the quality of the process, such as intensity and coverage. These images also permit the suppression or removal of local outlier variations. Anisotropy in a material property, such as magnetic permeability or electrical conductivity, can be intentionally introduced and used to assess material condition resulting from an operation, such as a cold work or heat treatment. The anisotropy is determined by sensors that provide directional property measurements. The sensor directionality arises from constructs that use a linear conducting drive segment to impose the magnetic field in a test material. Maintaining the orientation of this drive segment, and associated sense elements, relative to a material edge provides enhanced sensitivity for crack detection at edges
    corecore