4,478 research outputs found

    Wide-band doubler and sine wave quadrature generator

    Get PDF
    Phase-locked loop with photoresistive control, which provides both sine and cosine outputs for subcarrier demodulation, serves as a telemetry demodulator signal conditioner with a second harmonic signal for synchronization with the locally generated code

    Signal phase switches offer greater dynamic range

    Get PDF
    Circuit, placed in the signal path of a closed-loop receiver to modulate telemetered data in the 10-MHz spectrum, improves signal-to-noise ratio by 3 db in a communication receiver. The switch enables bandwidth reduction which reduces noise overload on the following stages, giving the system greater dynamic range

    Frequency discriminator/phase detector

    Get PDF
    Circuit provides dual function of frequency discriminator/phase detector which reduces frequency acquisition time without adding to circuit complexity. Both frequency discriminators, in evaluated frequency discriminator/phase detector circuits, are effective two decades above and below center frequency

    Third-order phase-locked loop receiver

    Get PDF
    Third-order extension to present second-order systems extends their Doppler tracking capabilities. It widens receiver pull-in range, decreases pull-in time, lowers voltage-controlled oscillator (VCO) noise (determining when no signal is present), and lessens susceptibility to VCO drift

    Filter for third order phase locked loops

    Get PDF
    Filters for third-order phase-locked loops are used in receivers to acquire and track carrier signals, particularly signals subject to high doppler-rate changes in frequency. A loop filter with an open-loop transfer function and set of loop constants, setting the damping factor equal to unity are provided

    The 1984 NASA/ASEE summer faculty fellowship program

    Get PDF
    An overview is given of the program management and activities. Participants and research advisors are listed. Abstracts give describe and present results of research assignments performed by 31 fellows either at the Johnson Space Center, at the White Sands test Facility, or at the California Space Institute in La Jolla. Disciplines studied include engineering; biology/life sciences; Earth sciences; chemistry; mathematics/statistics/computer sciences; and physics/astronomy

    Temperature dependence of the phonon entropy of vanadium

    Get PDF
    The phonon density-of-states (DOS) of elemental vanadium was measured at elevated temperatures by inelastic neutron scattering. The phonon softening predicted by thermal expansion against the bulk modulus is much larger than the measured shifts in phonon energies. We conclude that the phonon anharmonicities associated with thermal expansion are largely canceled by effects from phonon-phonon scattering. Prior measurements of the heat capacity and calculations of the electronic entropy of vanadium are assessed, and consistency requires an explicit temperature dependence of the phonon DOS. Using data from the literature, similar results are found for chromium, niobium, titanium, and zirconium

    Preface

    Get PDF

    The measure and significance of Bateman's principles

    Get PDF
    Bateman's principles explain sex roles and sexual dimorphism through sex-specific variance in mating success, reproductive success and their relationships within sexes (Bateman gradients). Empirical tests of these principles, however, have come under intense scrutiny. Here, we experimentally show that in replicate groups of red junglefowl, Gallus gallus, mating and reproductive successes were more variable in males than in females, resulting in a steeper male Bateman gradient, consistent with Bateman's principles. However, we use novel quantitative techniques to reveal that current methods typically overestimate Bateman's principles because they (i) infer mating success indirectly from offspring parentage, and thus miss matings that fail to result in fertilization, and (ii) measure Bateman gradients through the univariate regression of reproductive over mating success, without considering the substantial influence of other components of male reproductive success, namely female fecundity and paternity share. We also find a significant female Bateman gradient but show that this likely emerges as spurious consequences of male preference for fecund females, emphasizing the need for experimental approaches to establish the causal relationship between reproductive and mating success. While providing qualitative support for Bateman's principles, our study demonstrates how current approaches can generate a misleading view of sex differences and roles

    Special studies of AROD system concepts and designs

    Get PDF
    Signal processing techniques for range and range rate measurements in airborne range and orbit determinatio
    • …
    corecore