171 research outputs found

    Proof-of-principle of surface detection with air-guided quantum cascade lasers

    Get PDF
    We report a proof-of-principle of surface detection with air-guided quantum cascade lasers. Laser ridges were designed to exhibit an evanescent electromagnetic field on their top surface that can interact with material or liquids deposited on the device. We employ photoresist and common solvents to provide a demonstration of the sensor setup. We observed spectral as well as threshold currents changes as a function of the deposited material absorption curve. A simple model, supplemented by 2D numerical finite element method simulations, allows one to explain and correctly predict the experimental results

    Room temperature strong light-matter coupling in three dimensional terahertz meta-atoms

    Get PDF
    We demonstrate strong light-matter coupling in three dimensional terahertz meta-atoms at room temperature. The intersubband transition of semiconductor quantum wells with a parabolic energy potential is strongly coupled to the confined circuital mode of three-dimensional split-ring metal-semiconductor-metal resonators that have an extreme sub-wavelength volume (λ/10). The frequency of these lumped-element resonators is controlled by the size and shape of the external antenna, while the interaction volume remains constant. This allows the resonance frequency to be swept across the intersubband transition and the anti-crossing characteristic of the strong light-matter coupling regime to be observed. The Rabi splitting, which is twice the Rabi frequency (2ΩRabi), amounts to 20% of the bare transition at room temperature, and it increases to 28% at low-temperatur

    Quantum Cascade Microdisk Lasers for Mid Infrared Intra-Cavity Sensing

    Get PDF
    The design, fabrication, and testing of surface sensitive quantum cascade microdisk lasers in the mid-infrared for intra-cavity spectroscopy and integration with microfluidic delivery is presented

    Maternal Low-Protein Diet Deregulates DNA Repair and DNA Replication Pathways in Female Offspring Mammary Gland Leading to Increased Chemically Induced Rat Carcinogenesis in Adulthood

    Get PDF
    Studies have shown that maternal malnutrition, especially a low-protein diet (LPD), plays a key role in the developmental mechanisms underlying mammary cancer programming in female offspring. However, the molecular pathways associated with this higher susceptibility are still poorly understood. Thus, this study investigated the adverse effects of gestational and lactational low protein intake on gene expression of key pathways involved in mammary tumor initiation after a single dose of N-methyl-N-nitrosourea (MNU) in female offspring rats. Pregnant Sprague–Dawley rats were fed a normal-protein diet (NPD) (17% protein) or LPD (6% protein) from gestational day 1 to postnatal day (PND) 21. After weaning (PND 21), female offspring (n = 5, each diet) were euthanized for histological analysis or received NPD (n = 56 each diet). At PND 28 or 35, female offspring received a single dose of MNU (25 mg/kg body weight) (n = 28 each diet/timepoint). After 24 h, some females (n = 10 each diet/timepoint) were euthanized for histological, immunohistochemical, and molecular analyses at PDN 29 or 36. The remaining animals (n = 18 each diet/timepoint) were euthanized when tumors reached ≥2 cm or at PND 250. Besides the mammary gland development delay observed in LPD 21 and 28 groups, the gene expression profile demonstrated that maternal LPD deregulated 21 genes related to DNA repair and DNA replication pathways in the mammary gland of LPD 35 group after MNU. We further confirmed an increased γ-H2AX (DNA damage biomarker) and in ER-α immunoreactivity in mammary epithelial cells in the LPD group at PND 36. Furthermore, these early postnatal events were followed by significantly higher mammary carcinogenesis susceptibility in offspring at adulthood. Thus, the results indicate that maternal LPD influenced the programming of chemically induced mammary carcinogenesis in female offspring through increase in DNA damage and deregulation of DNA repair and DNA replication pathways. Also, Cidea upregulation gene in the LPD 35 group may suggest that maternal LPD could deregulate genes possibly leading to increased risk of mammary cancer development and/or poor prognosis. These findings increase the body of evidence of early-transcriptional mammary gland changes influenced by maternal LPD, resulting in differential response to breast tumor initiation and susceptibility and may raise discussions about lifelong prevention of breast cancer risk.Fil: Zapaterini, Joyce R.. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Fonseca, Antonio R. B.. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Bidinotto, Lucas T.. Barretos Cancer Hospital; Brasil. Barretos School of Health Sciences; BrasilFil: Colombelli, Ketlin T.. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Rossi, André L. D.. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Kass, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Salud y Ambiente del Litoral. Universidad Nacional del Litoral. Instituto de Salud y Ambiente del Litoral; ArgentinaFil: Justulin, Luis A.. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Barbisan, Luis F.. Universidade Estadual Paulista Julio de Mesquita Filho; Brasi

    Terahertz master-oscillator power-amplifier quantum cascade lasers

    Get PDF
    We report on the realization of a monolithically integrated master-oscillator power-amplifier architecture in a terahertz quantum cascade laser (THz-QCL) with a metal-metal waveguide. The master-oscillator section is a first-order distributed feedback (DFB) laser. Instead of using a thick anti-reflection coating, we exploit a diffraction grating together with an absorbing boundary in the power-amplifier section to efficiently extract the laser radiation and suppress the self-lasing in it. The devices demonstrate a stable generation and power amplification of single-mode emission. The amplification factor is about 5, and the output power is approximately twice that of the standard second-order DFB lasers fabricated from the same material. Emission beam pattern with a divergence angle of ∼18 × 40° is achieved. Our work provides an avenue for the realization of single-mode THz-QCLs with high output power and good beam quality

    Demonstration of air-guided quantum cascade lasers without top claddings

    Get PDF
    We report on quantum cascade lasers employing waveguides based on a predominant air confinement mechanism in which the active region is located immediately at the device top surface. The lasers employ ridge-waveguide resonators with narrow lateral electrical contacts only, with a large, central top region not covered by metallization layers. Devices based on this principle have been reported in the past; however, they employed a thick, doped top-cladding layer in order to allow for uniform current injection. We find that the in-plane conductivity of the active region - when the material used is of high quality - provides adequate electrical injection. As a consequence, the devices demonstrated in this work are thinner, and most importantly they can simultaneously support air-guided and surface-plasmon waveguide modes. When the lateral contacts are narrow, the optical mode is mostly located below the air-semiconductor interface. The mode is predominantly air-guided and it leaks from the top surface into the surrounding environment, suggesting that these lasers could be employed for surface-sensing applications. These laser modes are found to operate up to room temperature under pulsed injection, with an emission spectrum centered around λ ≃ 7:66 μm

    Mapping Patent Classifications: Portfolio and Statistical Analysis, and the Comparison of Strengths and Weaknesses

    Get PDF
    The Cooperative Patent Classifications (CPC) jointly developed by the European and US Patent Offices provide a new basis for mapping and portfolio analysis. This update provides an occasion for rethinking the parameter choices. The new maps are significantly different from previous ones, although this may not always be obvious on visual inspection. Since these maps are statistical constructs based on index terms, their quality--as different from utility--can only be controlled discursively. We provide nested maps online and a routine for portfolio overlays and further statistical analysis. We add a new tool for "difference maps" which is illustrated by comparing the portfolios of patents granted to Novartis and MSD in 2016.Comment: Scientometrics 112(3) (2017) 1573-1591; http://link.springer.com/article/10.1007/s11192-017-2449-
    • …
    corecore