245 research outputs found

    Isoperimetric Inequalities for Minimal Submanifolds in Riemannian Manifolds: A Counterexample in Higher Codimension

    Full text link
    For compact Riemannian manifolds with convex boundary, B.White proved the following alternative: Either there is an isoperimetric inequality for minimal hypersurfaces or there exists a closed minimal hypersurface, possibly with a small singular set. There is the natural question if a similar result is true for submanifolds of higher codimension. Specifically, B.White asked if the non-existence of an isoperimetric inequality for k-varifolds implies the existence of a nonzero, stationary, integral k-varifold. We present examples showing that this is not true in codimension greater than two. The key step is the construction of a Riemannian metric on the closed four-dimensional ball B with the following properties: (1) B has strictly convex boundary. (2) There exists a complete nonconstant geodesic. (3) There does not exist a closed geodesic in B.Comment: 11 pages, We changed the title and added a section that exhibits the relation between our example and the question posed by Brian White concerning isoperimetric inequalities for minimal submanifold

    Polynomial Growth Harmonic Functions on Finitely Generated Abelian Groups

    Full text link
    In the present paper, we develop geometric analytic techniques on Cayley graphs of finitely generated abelian groups to study the polynomial growth harmonic functions. We develop a geometric analytic proof of the classical Heilbronn theorem and the recent Nayar theorem on polynomial growth harmonic functions on lattices \mathds{Z}^n that does not use a representation formula for harmonic functions. We also calculate the precise dimension of the space of polynomial growth harmonic functions on finitely generated abelian groups. While the Cayley graph not only depends on the abelian group, but also on the choice of a generating set, we find that this dimension depends only on the group itself.Comment: 15 pages, to appear in Ann. Global Anal. Geo

    A simple proof of Perelman's collapsing theorem for 3-manifolds

    Full text link
    We will simplify earlier proofs of Perelman's collapsing theorem for 3-manifolds given by Shioya-Yamaguchi and Morgan-Tian. Among other things, we use Perelman's critical point theory (e.g., multiple conic singularity theory and his fibration theory) for Alexandrov spaces to construct the desired local Seifert fibration structure on collapsed 3-manifolds. The verification of Perelman's collapsing theorem is the last step of Perelman's proof of Thurston's Geometrization Conjecture on the classification of 3-manifolds. Our proof of Perelman's collapsing theorem is almost self-contained, accessible to non-experts and advanced graduate students. Perelman's collapsing theorem for 3-manifolds can be viewed as an extension of implicit function theoremComment: v1: 9 Figures. In this version, we improve the exposition of our arguments in the earlier arXiv version. v2: added one more grap

    Mean curvature flow in a Ricci flow background

    Full text link
    Following work of Ecker, we consider a weighted Gibbons-Hawking-York functional on a Riemannian manifold-with-boundary. We compute its variational properties and its time derivative under Perelman's modified Ricci flow. The answer has a boundary term which involves an extension of Hamilton's Harnack expression for the mean curvature flow in Euclidean space. We also derive the evolution equations for the second fundamental form and the mean curvature, under a mean curvature flow in a Ricci flow background. In the case of a gradient Ricci soliton background, we discuss mean curvature solitons and Huisken monotonicity.Comment: final versio

    The area of horizons and the trapped region

    Full text link
    This paper considers some fundamental questions concerning marginally trapped surfaces, or apparent horizons, in Cauchy data sets for the Einstein equation. An area estimate for outermost marginally trapped surfaces is proved. The proof makes use of an existence result for marginal surfaces, in the presence of barriers, curvature estimates, together with a novel surgery construction for marginal surfaces. These results are applied to characterize the boundary of the trapped region.Comment: 44 pages, v3: small changes in presentatio

    Cosmic Strings in the Abelian Higgs Model with Conformal Coupling to Gravity

    Full text link
    Cosmic string solutions of the abelian Higgs model with conformal coupling to gravity are shown to exist. The main characteristics of the solutions are presented and the differences with respect to the minimally coupled case are studied. An important difference is the absence of Bogomolnyi cosmic string solutions for conformal coupling. Several new features of the abelian Higgs cosmic strings of both types are discussed. The most interesting is perhaps a relation between the angular deficit and the central magnetic field which is bounded by a critical value.Comment: 22 pages, 10 figures; to appear in Phys. Rev.

    Non stationary Einstein-Maxwell fields interacting with a superconducting cosmic string

    Full text link
    Non stationary cylindrically symmetric exact solutions of the Einstein-Maxwell equations are derived as single soliton perturbations of a Levi-Civita metric, by an application of Alekseev inverse scattering method. We show that the metric derived by L. Witten, interpreted as describing the electrogravitational field of a straight, stationary, conducting wire may be recovered in the limit of a `wide' soliton. This leads to the possibility of interpreting the solitonic solutions as representing a non stationary electrogravitational field exterior to, and interacting with, a thin, straight, superconducting cosmic string. We give a detailed discussion of the restrictions that arise when appropiate energy and regularity conditions are imposed on the matter and fields comprising the string, considered as `source', the most important being that this `source' must necessarily have a non- vanishing minimum radius. We show that as a consequence, it is not possible, except in the stationary case, to assign uniquely a current to the source from a knowledge of the electrogravitational fields outside the source. A discussion of the asymptotic properties of the metrics, the physical meaning of their curvature singularities, as well as that of some of the metric parameters, is also included.Comment: 14 pages, no figures (RevTex

    ff-minimal surface and manifold with positive mm-Bakry-\'{E}mery Ricci curvature

    Full text link
    In this paper, we first prove a compactness theorem for the space of closed embedded ff-minimal surfaces of fixed topology in a closed three-manifold with positive Bakry-\'{E}mery Ricci curvature. Then we give a Lichnerowicz type lower bound of the first eigenvalue of the ff-Laplacian on compact manifold with positive mm-Bakry-\'{E}mery Ricci curvature, and prove that the lower bound is achieved only if the manifold is isometric to the nn-shpere, or the nn-dimensional hemisphere. Finally, for compact manifold with positive mm-Bakry-\'{E}mery Ricci curvature and ff-mean convex boundary, we prove an upper bound for the distance function to the boundary, and the upper bound is achieved if only if the manifold is isometric to an Euclidean ball.Comment: 15 page

    More about Birkhoff's Invariant and Thorne's Hoop Conjecture for Horizons

    Full text link
    A recent precise formulation of the hoop conjecture in four spacetime dimensions is that the Birkhoff invariant β\beta (the least maximal length of any sweepout or foliation by circles) of an apparent horizon of energy EE and area AA should satisfy β4πE\beta \le 4 \pi E. This conjecture together with the Cosmic Censorship or Isoperimetric inequality implies that the length \ell of the shortest non-trivial closed geodesic satisfies 2πA\ell^2 \le \pi A. We have tested these conjectures on the horizons of all four-charged rotating black hole solutions of ungauged supergravity theories and find that they always hold. They continue to hold in the the presence of a negative cosmological constant, and for multi-charged rotating solutions in gauged supergravity. Surprisingly, they also hold for the Ernst-Wild static black holes immersed in a magnetic field, which are asymptotic to the Melvin solution. In five spacetime dimensions we define β\beta as the least maximal area of all sweepouts of the horizon by two-dimensional tori, and find in all cases examined that β(g)16π3E \beta(g) \le \frac{16 \pi}{3} E, which we conjecture holds quiet generally for apparent horizons. In even spacetime dimensions D=2N+2D=2N+2, we find that for sweepouts by the product S1×SD4S^1 \times S^{D-4}, β\beta is bounded from above by a certain dimension-dependent multiple of the energy EE. We also find that D2\ell^{D-2} is bounded from above by a certain dimension-dependent multiple of the horizon area AA. Finally, we show that D3\ell^{D-3} is bounded from above by a certain dimension-dependent multiple of the energy, for all Kerr-AdS black holes.Comment: 25 page

    Complete Classification of the String-like Solutions of the Gravitating Abelian Higgs Model

    Get PDF
    The static cylindrically symmetric solutions of the gravitating Abelian Higgs model form a two parameter family. In this paper we give a complete classification of the string-like solutions of this system. We show that the parameter plane is composed of two different regions with the following characteristics: One region contains the standard asymptotically conic cosmic string solutions together with a second kind of solutions with Melvin-like asymptotic behavior. The other region contains two types of solutions with bounded radial extension. The border between the two regions is the curve of maximal angular deficit of 2π2\pi.Comment: 12 pages, 4 figure
    corecore