Following work of Ecker, we consider a weighted Gibbons-Hawking-York
functional on a Riemannian manifold-with-boundary. We compute its variational
properties and its time derivative under Perelman's modified Ricci flow. The
answer has a boundary term which involves an extension of Hamilton's Harnack
expression for the mean curvature flow in Euclidean space. We also derive the
evolution equations for the second fundamental form and the mean curvature,
under a mean curvature flow in a Ricci flow background. In the case of a
gradient Ricci soliton background, we discuss mean curvature solitons and
Huisken monotonicity.Comment: final versio