research

Mean curvature flow in a Ricci flow background

Abstract

Following work of Ecker, we consider a weighted Gibbons-Hawking-York functional on a Riemannian manifold-with-boundary. We compute its variational properties and its time derivative under Perelman's modified Ricci flow. The answer has a boundary term which involves an extension of Hamilton's Harnack expression for the mean curvature flow in Euclidean space. We also derive the evolution equations for the second fundamental form and the mean curvature, under a mean curvature flow in a Ricci flow background. In the case of a gradient Ricci soliton background, we discuss mean curvature solitons and Huisken monotonicity.Comment: final versio

    Similar works

    Full text

    thumbnail-image

    Available Versions