78 research outputs found

    Werner syndrome protein limits MYC-induced cellular senescence - Supplementary Materials Only

    Get PDF
    The MYC oncoprotein is a transcription factor that coordinates cell growth and division. MYC overexpression exacerbates genomic instability and sensitizes cells to apoptotic stimuli. Here we demonstrate that MYC directly stimulates transcription of the human Werner syndrome gene, WRN, which encodes a conserved RecQ helicase. Loss-of-function mutations in WRN lead to genomic instability, an elevated cancer risk, and premature cellular senescence. The overexpression of MYC in WRN syndrome fibroblasts or after WRN depletion from control fibroblasts led to rapid cellular senescence that could not be suppressed by hTERT expression. We propose that WRN up-regulation by MYC may promote MYC-driven tumorigenesis by preventing cellular senescence

    M6P/IGF2R loss of heterozygosity in head and neck cancer associated with poor patient prognosis

    Get PDF
    BACKGROUND: The mannose 6-phosphate/insulin-like growth factor 2 receptor (M6P/IGF2R) encodes for a multifunctional receptor involved in lysosomal enzyme trafficking, fetal organogenesis, cytotoxic T cell-induced apoptosis and tumor suppression. The purpose of this investigation was to determine if the M6P/IGF2R tumor suppressor gene is mutated in human head and neck cancer, and if allelic loss is associated with poor patient prognosis. METHODS: M6P/IGF2R loss of heterozygosity in locally advanced squamous cell carcinoma of the head and neck was assessed with six different gene-specific nucleotide polymorphisms. The patients studied were enrolled in a phase 3 trial of twice daily radiotherapy with or without concurrent chemotherapy; median follow-up for surviving patients is 76 months. RESULTS: M6P/IGF2R was polymorphic in 64% (56/87) of patients, and 54% (30/56) of the tumors in these informative patients had loss of heterozygosity. M6P/IGF2R loss of heterozygosity was associated with a significantly reduced 5 year relapse-free survival (23% vs. 69%, p = 0.02), locoregional control (34% vs. 75%, p = 0.03) and cause specific survival (29% vs. 75%, p = 0.02) in the patients treated with radiotherapy alone. Concomitant chemotherapy resulted in a better outcome when compared to radiotherapy alone only in those patients whose tumors had M6P/IGF2R loss of heterozygosity. CONCLUSIONS: This study provides the first evidence that M6P/IGF2R loss of heterozygosity predicts for poor therapeutic outcome in patients treated with radiotherapy alone. Our findings also indicate that head and neck cancer patients with M6P/IGF2R allelic loss benefit most from concurrent chemotherapy

    siRNA-Based Targeting of Cyclin E Overexpression Inhibits Breast Cancer Cell Growth and Suppresses Tumor Development in Breast Cancer Mouse Model

    Get PDF
    Cyclin E is aberrantly expressed in many types of cancer including breast cancer. High levels of the full length as well as the low molecular weight isoforms of cyclin E are associated with poor prognosis of breast cancer patients. Notably, cyclin E overexpression is also correlated with triple-negative basal-like breast cancers, which lack specific therapeutic targets. In this study, we used siRNA to target cyclin E overexpression and assessed its ability to suppress breast cancer growth in nude mice. Our results revealed that cyclin E siRNA could effectively inhibit overexpression of both full length and low molecular weight isoforms of cyclin E. We found that depletion of cyclin E promoted apoptosis of cyclin E-overexpressing cells and blocked their proliferation and transformation phenotypes. Significantly, we further demonstrated that administration of cyclin E siRNA could inhibit breast tumor growth in nude mice. In addition, we found that cyclin E siRNA synergistically enhanced the cell killing effects of doxorubicin in cell culture and this combination greatly suppressed the tumor growth in mice. In conclusion, our results indicate that cyclin E, which is overexpressed in 30% of breast cancer, may serve as a novel and effective therapeutic target. More importantly, our study clearly demonstrates a very promising therapeutic potential of cyclin E siRNA for treating the cyclin E-overexpressing breast cancers, including the very malignant triple-negative breast cancers

    Characterization of Cyclin E Expression in Multiple Myeloma and Its Functional Role in Seliciclib-Induced Apoptotic Cell Death

    Get PDF
    Multiple Myeloma (MM) is a lymphatic neoplasm characterized by clonal proliferation of malignant plasma cell that eventually develops resistance to chemotherapy. Drug resistance, differentiation block and increased survival of the MM tumor cells result from high genomic instability. Chromosomal translocations, the most common genomic alterations in MM, lead to dysregulation of cyclin D, a regulatory protein that governs the activation of key cell cycle regulator – cyclin dependent kinase (CDK). Genomic instability was reported to be affected by over expression of another CDK regulator - cyclin E (CCNE). This occurs early in tumorigenesis in various lymphatic malignancies including CLL, NHL and HL. We therefore sought to investigate the role of cyclin E in MM. CCNE1 expression was found to be heterogeneous in various MM cell lines (hMMCLs). Incubation of hMMCLs with seliciclib, a selective CDK-inhibitor, results in apoptosis which is accompanied by down regulation of MCL1 and p27. Ectopic over expression of CCNE1 resulted in reduced sensitivity of the MM tumor cells in comparison to the paternal cell line, whereas CCNE1 silencing with siRNA increased the cell sensitivity to seliciclib. Adhesion to FN of hMMCLs was prevented by seliciclib, eliminating adhesion–mediated drug resistance of MM cells. Combination of seliciclib with flavopiridol effectively reduced CCNE1 and CCND1 protein levels, increased subG1 apoptotic fraction and promoted MM cell death in BMSCs co-culture conditions, therefore over-coming stroma-mediated protection. We suggest that seliciclib may be considered as essential component of modern anti MM drug combination therapy

    MiR-155 Induction by F. novicida but Not the Virulent F. tularensis Results in SHIP Down-Regulation and Enhanced Pro-Inflammatory Cytokine Response

    Get PDF
    The intracellular Gram-negative bacterium Francisella tularensis causes the disease tularemia and is known for its ability to subvert host immune responses. Previous work from our laboratory identified the PI3K/Akt pathway and SHIP as critical modulators of host resistance to Francisella. Here, we show that SHIP expression is strongly down-regulated in monocytes and macrophages following infection with F. tularensis novicida (F.n.). To account for this negative regulation we explored the possibility that microRNAs (miRs) that target SHIP may be induced during infection. There is one miR that is predicted to target SHIP, miR-155. We tested for induction and found that F.n. induced miR-155 both in primary monocytes/macrophages and in vivo. Using luciferase reporter assays we confirmed that miR-155 led to down-regulation of SHIP, showing that it specifically targets the SHIP 3′UTR. Further experiments showed that miR-155 and BIC, the gene that encodes miR-155, were induced as early as four hours post-infection in primary human monocytes. This expression was dependent on TLR2/MyD88 and did not require inflammasome activation. Importantly, miR-155 positively regulated pro-inflammatory cytokine release in human monocytes infected with Francisella. In sharp contrast, we found that the highly virulent type A SCHU S4 strain of Francisella tularensis (F.t.) led to a significantly lower miR-155 response than the less virulent F.n. Hence, F.n. induces miR-155 expression and leads to down-regulation of SHIP, resulting in enhanced pro-inflammatory responses. However, impaired miR-155 induction by SCHU S4 may help explain the lack of both SHIP down-regulation and pro-inflammatory response and may account for the virulence of Type A Francisella

    Tandem E2F Binding Sites in the Promoter of the p107 Cell Cycle Regulator Control p107 Expression and Its Cellular Functions

    Get PDF
    The retinoblastoma tumor suppressor (Rb) is a potent and ubiquitously expressed cell cycle regulator, but patients with a germline Rb mutation develop a very specific tumor spectrum. This surprising observation raises the possibility that mechanisms that compensate for loss of Rb function are present or activated in many cell types. In particular, p107, a protein related to Rb, has been shown to functionally overlap for loss of Rb in several cellular contexts. To investigate the mechanisms underlying this functional redundancy between Rb and p107 in vivo, we used gene targeting in embryonic stem cells to engineer point mutations in two consensus E2F binding sites in the endogenous p107 promoter. Analysis of normal and mutant cells by gene expression and chromatin immunoprecipitation assays showed that members of the Rb and E2F families directly bound these two sites. Furthermore, we found that these two E2F sites controlled both the repression of p107 in quiescent cells and also its activation in cycling cells, as well as in Rb mutant cells. Cell cycle assays further indicated that activation of p107 transcription during S phase through the two E2F binding sites was critical for controlled cell cycle progression, uncovering a specific role for p107 to slow proliferation in mammalian cells. Direct transcriptional repression of p107 by Rb and E2F family members provides a molecular mechanism for a critical negative feedback loop during cell cycle progression and tumorigenesis. These experiments also suggest novel therapeutic strategies to increase the p107 levels in tumor cells

    MiR-218 Inhibits Invasion and Metastasis of Gastric Cancer by Targeting the Robo1 Receptor

    Get PDF
    MicroRNAs play key roles in tumor metastasis. Here, we describe the regulation and function of miR-218 in gastric cancer (GC) metastasis. miR-218 expression is decreased along with the expression of one of its host genes, Slit3 in metastatic GC. However, Robo1, one of several Slit receptors, is negatively regulated by miR-218, thus establishing a negative feedback loop. Decreased miR-218 levels eliminate Robo1 repression, which activates the Slit-Robo1 pathway through the interaction between Robo1 and Slit2, thus triggering tumor metastasis. The restoration of miR-218 suppresses Robo1 expression and inhibits tumor cell invasion and metastasis in vitro and in vivo. Taken together, our results describe a Slit-miR-218-Robo1 regulatory circuit whose disruption may contribute to GC metastasis. Targeting miR-218 may provide a strategy for blocking tumor metastasis

    Estrogen mediated-activation of miR-191/425 cluster modulates tumorigenicity of breast cancer cells depending on estrogen receptor status.

    Get PDF
    MicroRNAs (miRNAs), single-stranded non-coding RNAs, influence myriad biological processes that can contribute to cancer. Although tumor-suppressive and oncogenic functions have been characterized for some miRNAs, the majority of microRNAs have not been investigated for their ability to promote and modulate tumorigenesis. Here, we established that the miR-191/425 cluster is transcriptionally dependent on the host gene, DALRD3, and that the hormone 17β-estradiol (estrogen or E2) controls expression of both miR-191/425 and DALRD3. MiR-191/425 locus characterization revealed that the recruitment of estrogen receptor α (ERα) to the regulatory region of the miR-191/425-DALRD3 unit resulted in the accumulation of miR-191 and miR-425 and subsequent decrease in DALRD3 expression levels. We demonstrated that miR-191 protects ERα positive breast cancer cells from hormone starvation-induced apoptosis through the suppression of tumor-suppressor EGR1. Furthermore, enforced expression of the miR-191/425 cluster in aggressive breast cancer cells altered global gene expression profiles and enabled us to identify important tumor promoting genes, including SATB1, CCND2, and FSCN1, as targets of miR-191 and miR-425. Finally, in vitro and in vivo experiments demonstrated that miR-191 and miR-425 reduced proliferation, impaired tumorigenesis and metastasis, and increased expression of epithelial markers in aggressive breast cancer cells. Our data provide compelling evidence for the transcriptional regulation of the miR-191/425 cluster and for its context-specific biological determinants in breast cancers. Importantly, we demonstrated that the miR-191/425 cluster, by reducing the expression of an extensive network of genes, has a fundamental impact on cancer initiation and progression of breast cancer cells
    • …
    corecore