6,222 research outputs found
Detection of Tiny Mechanical Motion by Means of the Ratchet Effect
We propose a position detection scheme for a nanoelectromechanical resonator
based on the ratchet effect. This scheme has an advantage of being a dc
measurement. We consider a three-junction SQUID where a part of the
superconducting loop can perform mechanical motion. The response of the ratchet
to a dc current is sensitive to the position of the resonator and the effect
can be further enhanced by biasing the SQUID with an ac current. We discuss the
feasibility of the proposed scheme in existing experimental setups.Comment: 8 pages, 9 figure
Response of discrete nonlinear systems with many degrees of freedom
We study the response of a large array of coupled nonlinear oscillators to
parametric excitation, motivated by the growing interest in the nonlinear
dynamics of microelectromechanical and nanoelectromechanical systems (MEMS and
NEMS). Using a multiscale analysis, we derive an amplitude equation that
captures the slow dynamics of the coupled oscillators just above the onset of
parametric oscillations. The amplitude equation that we derive here from first
principles exhibits a wavenumber dependent bifurcation similar in character to
the behavior known to exist in fluids undergoing the Faraday wave instability.
We confirm this behavior numerically and make suggestions for testing it
experimentally with MEMS and NEMS resonators.Comment: Version 2 is an expanded version of the article, containing detailed
steps of the derivation that were left out in version 1, but no additional
result
Metastability and the Casimir Effect in Micromechanical Systems
Electrostatic and Casimir interactions limit the range of positional
stability of electrostatically-actuated or capacitively-coupled mechanical
devices. We investigate this range experimentally for a generic system
consisting of a doubly-clamped Au suspended beam, capacitively-coupled to an
adjacent stationary electrode. The mechanical properties of the beam, both in
the linear and nonlinear regimes, are monitored as the attractive forces are
increased to the point of instability. There "pull-in" occurs, resulting in
permanent adhesion between the electrodes. We investigate, experimentally and
theoretically, the position-dependent lifetimes of the free state (existing
prior to pull-in). We find that the data cannot be accounted for by simple
theory; the discrepancy may be reflective of internal structural instabilities
within the metal electrodes.Comment: RevTex, 4 pages, 4 figure
Singlet-triplet relaxation induced by confined phonons in nanowire-based quantum dots
The singlet-triplet relaxation in nanowire-based quantum dots induced by
confined phonons is investigated theoretically. Due to the
quasi-one-dimensional nature of the confined phonons, the singlet-triplet
relaxation rates exhibit multi-peaks as function of magnetic field and the
relaxation rate between the singlet and the spin up triplet state is found to
be enhanced at the vicinity of the singlet-triplet anti-crossing. We compare
the effect of the deformation-potential coupling and the piezoelectric coupling
and find that the deformation-potential coupling dominates the relaxation rates
in most cases.Comment: 7 pages, 5 figure
Qubit-induced phonon blockade as a signature of quantum behavior in nanomechanical resonators
The observation of quantized nanomechanical oscillations by detecting
femtometer-scale displacements is a significant challenge for experimentalists.
We propose that phonon blockade can serve as a signature of quantum behavior in
nanomechanical resonators. In analogy to photon blockade and Coulomb blockade
for electrons, the main idea for phonon blockade is that the second phonon
cannot be excited when there is one phonon in the nonlinear oscillator. To
realize phonon blockade, a superconducting quantum two-level system is coupled
to the nanomechanical resonator and is used to induce the phonon
self-interaction. Using Monte Carlo simulations, the dynamics of the induced
nonlinear oscillator is studied via the Cahill-Glauber -parametrized
quasiprobability distributions. We show how the oscillation of the resonator
can occur in the quantum regime and demonstrate how the phonon blockade can be
observed with currently accessible experimental parameters
Superconducting Qubits Coupled to Nanoelectromechanical Resonators: An Architecture for Solid-State Quantum Information Processing
We describe the design for a scalable, solid-state
quantum-information-processing architecture based on the integration of
GHz-frequency nanomechanical resonators with Josephson tunnel junctions, which
has the potential for demonstrating a variety of single- and multi-qubit
operations critical to quantum computation. The computational qubits are
eigenstates of large-area, current-biased Josephson junctions, manipulated and
measured using strobed external circuitry. Two or more of these phase qubits
are capacitively coupled to a high-quality-factor piezoelectric
nanoelectromechanical disk resonator, which forms the backbone of our
architecture, and which enables coherent coupling of the qubits. The integrated
system is analogous to one or more few-level atoms (the Josephson junction
qubits) in an electromagnetic cavity (the nanomechanical resonator). However,
unlike existing approaches using atoms in electromagnetic cavities, here we can
individually tune the level spacing of the ``atoms'' and control their
``electromagnetic'' interaction strength. We show theoretically that quantum
states prepared in a Josephson junction can be passed to the nanomechanical
resonator and stored there, and then can be passed back to the original
junction or transferred to another with high fidelity. The resonator can also
be used to produce maximally entangled Bell states between a pair of Josephson
junctions. Many such junction-resonator complexes can assembled in a
hub-and-spoke layout, resulting in a large-scale quantum circuit. Our proposed
architecture combines desirable features of both solid-state and cavity quantum
electrodynamics approaches, and could make quantum information processing
possible in a scalable, solid-state environment.Comment: 20 pages, 14 separate low-resolution jpeg figure
Heat capacity of a thin membrane at very low temperature
We calculate the dependence of heat capacity of a free standing thin membrane
on its thickness and temperature. A remarkable fact is that for a given
temperature there exists a minimum in the dependence of the heat capacity on
the thickness. The ratio of the heat capacity to its minimal value for a given
temperature is a universal function of the ratio of the thickness to its value
corresponding to the minimum. The minimal value of the heat capacitance for
given temperature is proportional to the temperature squared. Our analysis can
be used, in particular, for optimizing support membranes for microbolometers
On testing the violation of the Clausius inequality in nanoscale electric circuits
The Clausius inequality, one of the classical formulations of the second law,
was recently found to be violated in the quantum regime. Here this result is
formulated in the context of a mesoscopic or nanoscale linear RLC circuit
interacting with a thermal bath. Previous experiments in this and related
fields are analyzed and possibilities of experimental detection of the
violation are pointed out. It is discussed that recent experiments reached the
range of temperatures, where the effect should be visible, and that a part of
the proposal was already confirmed.Comment: 5 pages revtex 4. No figure
Polysemy in the mental lexicon: relatedness and frequency affect representational overlap
Meaning relatedness affects storage of ambiguous words in the mental lexicon: unrelated meanings(homonymy) are stored separately whereas related senses (polysemy) are stored as one large representational entry. We hypothesised that word frequency could have similar effects on storage, with low-frequency words having high representational overlap and high-frequency words having low representational overlap. Participants performed lexical decision or semantic
categorisation to high- and low-frequency nouns with few and many senses. Results showed a three-way interaction between frequency, task type, and polysemy. Low-frequency words showed a polysemy advantage with lexical decision but a polysemy disadvantage with semantic categorisation, whereas high-frequency words showed the opposite pattern. These results confirmed our hypothesis that relatedness and word frequency have similar effects on storage of ambiguous words
- …
