5,495 research outputs found
Supersymmetry in the Standard Model
We prove that the bosons and massless fermions of one generation of the
standard model are supersymmetric partners of each other. Except for one
additional auxilliary vector boson, there are no other SUSY particles.Comment: RevTex, 6 pages, uuencoded tar compressed fil
Particle Spectrum of the Supersymmetric Standard Model from the Massless Excitations of a Four Dimensional Superstring
A superstring action is quantised with Neveu Schwarz(NS) and Ramond(R)
boundary conditions. The zero mass states of the NS sector are classified as
the vector gluons, W-mesons, -mesons and scalars containing Higgs. The
fifteen zero mass fermions are obtained from the Ramond sector. A space time
supersymmetric Hamiltonian of the Standard Model is presented without any
conventional SUSY particles
A bright, pulsed two-mode squeezer
We report the realization of a bright ultrafast two-mode squeezer based on
type II parametric downconversion (PDC) in periodically poled
(PP-KTP) waveguides. It produces a pulsed two-mode squeezed
vacuum state: a photon-number entangled pair of truly single-mode pulses or, in
terms of continuous variables quantum optics, a pulsed, single mode
Einstein-Podolsky-Rosen (EPR) state in the telecom regime. We prove the single
mode character of our source by measuring its correlation function
and demonstrate a mean photon number of up to 2.5 per pulse, equivalent to 11dB
of two-mode squeezing.Comment: 4 pages, 3 figure
From quantum pulse gate to quantum pulse shaper -- enigneered frequency conversion in nonlinear optical waveguides
Full control over the spatio-temporal structure of quantum states of light is
an important goal in quantum optics, to generate for instance single-mode
quantum pulses or to encode information on multiple modes, enhancing channel
capacities. Quantum light pulses feature an inherent, rich spectral
broadband-mode structure. In recent years, exploring the use of integrated
optics as well as source-engineering has led to a deep understanding of the
pulse-mode structure of guided quantum states of light. In addition, several
groups have started to investigate the manipulation of quantum states by means
of single-photon frequency conversion. In this paper we explore new routes
towards complete control of the inherent pulse-modes of ultrafast pulsed
quantum states by employing specifically designed nonlinear waveguides with
adapted dispersion properties. Starting from our recently proposed quantum
pulse gate (QPG) we further generalize the concept of spatio-spectral
engineering for arbitrary \chitwo-based quantum processes. We analyse the
sum-frequency generation based QPG and introduce the difference-frequency
generation based quantum pulse shaper (QPS). Together, these versatile and
robust integrated optics devices allow for arbitrary manipulations of the
pulse-mode structure of ultrafast pulsed quantum states. The QPG can be
utilized to select an arbitrary pulse mode from a multimode input state,
whereas the QPS enables the generation of specific pulse modes from an input
wavepacket with Gaussian-shaped spectrum.Comment: 21 pages, 9 figure
Recommended from our members
The occipital lateral plate mesoderm is a novel source for vertebrate neck musculature
In vertebrates, body musculature originates from somites, whereas head muscles originate from the cranial mesoderm. Neck muscles are located in the transition between these regions. We show that the chick occipital lateral plate mesoderm has myogenic capacity and gives rise to large muscles located in the neck and thorax. We present molecular and genetic evidence to show that these muscles not only have a unique origin, but additionally display a distinct temporal development, forming later than any other muscle group described to date. We further report that these muscles, found in the body of the animal, develop
like head musculature rather than deploying the programme used by the trunk muscles. Using mouse genetics we reveal that these muscles are formed in trunk muscle mutants but are absent in head muscle mutants. In concordance with this conclusion, their connective tissue is neural crest in origin. Finally, we provide evidence that the mechanism by which these neck muscles develop is conserved in vertebrates
The random lattice as a regularization scheme
A semi-analytic method to compute the first coefficients of the
renormalization group functions on a random lattice is introduced. It is used
to show that the two-dimensional non-linear -model regularized
on a random lattice has the correct continuum limit. A degree of
``randomness'' in the lattice is introduced and an estimate of the ratio
for two rather opposite values of
in the -model is also given. This ratio turns out to depend on
.Comment: PostScript file. 22 pages. Revised and enlarged versio
Anomalous Chiral Symmetry Breaking above the QCD Phase Transition
We study the anomalous breaking of U_A(1) symmetry just above the QCD phase
transition for zero and two flavors of quarks, using a staggered fermion,
lattice discretization. The properties of the QCD phase transition are expected
to depend on the degree of U_A(1) symmetry breaking in the transition region.
For the physical case of two flavors, we carry out extensive simulations on a
16^3 x 4 lattice, measuring a difference in susceptibilities which is sensitive
to U_A(1) symmetry and which avoids many of the staggered fermion
discretization difficulties. The results suggest that anomalous effects are at
or below the 15% level.Comment: 10 pages including 2 figures and 1 tabl
Gap Domain Wall Fermions
I demonstrate that the chiral properties of Domain Wall Fermions (DWF) in the
large to intermediate lattice spacing regime of QCD, 1 to 2 GeV, are
significantly improved by adding to the action two standard Wilson fermions
with supercritical mass equal to the negative DWF five dimensional mass. Using
quenched DWF simulations I show that the eigenvalue spectrum of the transfer
matrix Hamiltonian develops a substantial gap and that the residual mass
decreases appreciatively. Furthermore, I confirm that topology changing remains
active and that the hadron spectrum of the added Wilson fermions is above the
lattice cutoff and therefore is irrelevant. I argue that this result should
also hold for dynamical DWF and furthermore that it should improve the chiral
properties of related fermion methods.Comment: 12 pages of text, 14 figures, added sect.6 on topology and reference
- …
