15 research outputs found

    Technological quality of dough and breads from commercial algarroba-wheat flour blends

    Get PDF
    Algarroba flour is used to supplement lysinelimiting systems such as wheat flour due to its amino acidic composition. The effects of adding up to 30% of this flour to wheat flour (W-A30) on dough characteristics and breadmaking performance were studied. Dough rheology was tested by farinograph, oscillatory rheometry and texture profile analyses. Molecular mobility was evaluated by nuclear magnetic resonance, and thermal properties were analyzed by differential scanning calorimetry and viscoamylograph studies. Besides, different bread quality parameters were evaluated. Incorporation of algarroba flour resulted into increase in water absorption, development time and degree of softening, and decrease in stability of wheat flour, leading to softer, less adhesive and elastic dough, although at intermediate replacement levels cohesiveness improved. At the molecular level, a reduction of water activity and limited proton motion were observed in W-A30 samples, suggesting that protons were highly bound to the dough matrix. Dough samples with algarroba flour showed lower G0 and G00 values than the control, although with the formation of a more elastic structure for W-A30. In addition, algarroba flour produced a protective effect on starch granule disruption and interfered with amylose–amylose association during cooling. The specific volume of breads decreased with the increase in algarroba level, W-A30 reaching the highest decrease (15%). Bread crumbs with algarroba flour exhibited higher values of hardness and resilience. The use of algarroba flour resulted in lower quality when compared to the control. However, algarroba flour at 20% level can be added to wheat flour to obtain bakery products of similar technological quality and with improved nutritional components.Centro de Investigación y Desarrollo en Criotecnología de Alimento

    On principal shear axes for correction factors in Timoshenko beam theory

    No full text
    Compelling arguments with substantiating data are presented to explain why there is no role for principal shear axes in shear correction factors of Timoshenko beam theory. This article supplies more details to the explanation in a previous paper on this issue

    Technological quality of dough and breads from commercial algarroba–wheat flour blends

    No full text
    Algarroba flour is used to supplement lysine-limiting systems such as wheat flour due to its amino acidic composition. The effects of adding up to 30% of this flour to wheat flour (W-A30) on dough characteristics and breadmaking performance were studied. Dough rheology was tested by farinograph, oscillatory rheometry and texture profile analyses. Molecular mobility was evaluated by nuclear magnetic resonance, and thermal properties were analyzed by differential scanning calorimetry and viscoamylograph studies. Besides, different bread quality parameters were evaluated. Incorporation of algarroba flour resulted into increase in water absorption, development time and degree of softening, and decrease in stability of wheat flour, leading to softer, less adhesive and elastic dough, although at intermediate replacement levels cohesiveness improved. At the molecular level, a reduction of water activity and limited proton motion were observed in W-A30 samples, suggesting that protons were highly bound to the dough matrix. Dough samples with algarroba flour showed lower G′ and G″ values than the control, although with the formation of a more elastic structure for W-A30. In addition, algarroba flour produced a protective effect on starch granule disruption and interfered with amylose–amylose association during cooling. The specific volume of breads decreased with the increase in algarroba level, W-A30 reaching the highest decrease (15%). Bread crumbs with algarroba flour exhibited higher values of hardness and resilience. The use of algarroba flour resulted in lower quality when compared to the control. However, algarroba flour at 20% level can be added to wheat flour to obtain bakery products of similar technological quality and with improved nutritional components.Fil: Correa, María Jimena. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; ArgentinaFil: Salinas, Maria Victoria. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; ArgentinaFil: Carbas, B.. Instituto Nacional de Investigação Agrária e Veterinária; PortugalFil: Ferrero, Cristina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; ArgentinaFil: Brites, C.. Instituto Nacional de Investigação Agrária e Veterinária; PortugalFil: Puppo, Maria Cecilia. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Agrarias y Forestales; Argentin

    Chemical composition and antioxidant activity of commercial flours from Ceratonia siliqua and Prosopis spp.

    No full text
    Ceratonia siliqua and some species of Prosopis (Fabaceae family) are commonly known as carob trees. The flours obtained from their pods are used in the food industry, as cocoa substitute in the confectionery and also used in beverages and mixed with products derived from cereals. The aim of this study was to compare and characterize the physical and chemical properties, specially the antioxidant activities, of the two commercial carob flours. Commercial Prosopis spp. (mainly from P. alba) flour exhibited high content of protein, starch and fat, while commercial flour from C. siliqua had a lower content of these compounds, but higher antioxidant activity. By nuclear magnetic resonance (NMR) the aqueous extracts of the two carob flours were analysed and concluded that they had similar content of sucrose, but C. siliqua had more monosaccharides and pinitol. This important cyclitol has beneficial physiological effects, improving the glycaemic level and, thus, having a great potential in the food industry. We conclude that the commercial flour of C. siliqua has a better nutritional potential than that of Prosopis spp., owing to dietary fiber, total phenols, pinitol and antioxidant activity. Our results corroborate the nutritional benefits of the commercial supplements already available for healthy food formulations.Centro de Investigación y Desarrollo en Criotecnología de AlimentosFacultad de Ciencias Agrarias y Forestale

    Performance of the Whale Optimization Algorithm in Space Steel Frame Optimization Problems

    No full text
    6th International Conference on Harmony Search, Soft Computing and Applications, ICHSA 2020, IstanbulFrame optimization that contains highly non-linear and irregular functions and discrete design variables is one of the most challenging optimization problems. Therefore, gradient-based optimization techniques cannot be successful in such problems. Metaheuristic techniques, especially population-based metaheuristic techniques, perform highly effective in solving the frame optimization problem. However, stochastic processes’ performances included in metaheuristic techniques vary based on the problem. Accordingly, researches on the performance of novel metaheuristic techniques on challenging engineering problems continue. One of the novel metaheuristic techniques is the whale optimization algorithm (WOA) which is inspired by the bubble-net feeding behavior of humpback whales. The aim of this study is testing the performance of WOA for space steel frame optimization problems. For this purpose, WOA-cased frame optimization program will be developed. Benchmark frame structures are selected to compare optimum solutions with literature results. © 2021, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.No sponso

    Development and Study of a New Silane Based Polyurethane Hybrid Flexible Adhesive—Part 1: Mechanical Characterization

    No full text
    The need for more sustainable adhesive formulations has led to the use of silane-based adhesives in different industrial sectors, such as the automotive industry. In this work, the mechanical properties of a dual cure two-component prototype adhesive which combined silylated polyurethane resin (SPUR) with standard epoxy resin was characterized under quasi-static conditions. The characterization process consisted of tensile bulk testing, to determine the Young’s modulus, the tensile strength and the tensile strain to failure. The shear stiffness and shear strength were measured by performing a thick adherend shear test. The in-plane strain field was obtained using a digital image correlation method. Double-cantilever beam and mixed-mode tests were performed to assess the fracture toughness under pure modes. The prototype adhesive showed promising but lower properties compared to commercial solutions. Furthermore, the adhesive was modified via the addition of three different resin modifier additives and characterized via measuring the shear and tensile properties, but no enhancements were found. Finally, the adhesive was formulated with three different SPUR viscosities. The critical energy release rate analysis showed an optimum value for the medium viscosity SPUR adhesive
    corecore