3,348 research outputs found

    2009 Continued Testing of the Orion Atmosphere Revitalization Technology

    Get PDF
    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Orion Atmosphere Revitalization System (ARS). In three previous years at this conference, reports were presented on extensive Johnson Space Center (JSC) testing of this technology in a sea-level pressure environment, with simulated and real human metabolic loads, in both open and closed-loop configurations. The test article design was iterated a third time before the latest series of such tests, which was performed in the first half of 2009. The new design incorporates a canister configuration modification for overall unit compactness and reduced pressure drop, as well as a new process flow control valve that incorporates both compressed gas purge and dual-end vacuum desorption capabilities. This newest test article is very similar to the flight article designs. Baseline tests of the new unit were performed to compare its performance to that of the previous test articles. Testing of compressed gas purge operations helped refine launchpad operating condition recommendations developed in earlier testing. Operating conditions used in flight program computer models were tested to validate the model projections. Specific operating conditions that were recommended by the JSC test team based on past test results were also tested for validation. The effects of vacuum regeneration line pressure on resulting cabin conditions was studied for high metabolic load periods, and a maximum pressure is recommende

    Amine Swingbed Payload Testing on ISS

    Get PDF
    One of NASA Johnson Space Center's test articles of the amine-based carbon dioxide (CO2) and water vapor sorbent system known as the CO2 And Moisture Removal Amine Swing-bed, or CAMRAS, was incorporated into a payload on the International Space Station (ISS). The intent of the payload is to demonstrate the spacecraft-environment viability of the core atmosphere revitalization technology baselined for the new Orion vehicle. In addition to the air blower, vacuum connection, and controls needed to run the CAMRAS, the payload incorporates a suite of sensors for scientific data gathering, a water save function, and an air save function. The water save function minimizes the atmospheric water vapor reaching the CAMRAS unit, thereby reducing ISS water losses that are otherwise acceptable, and even desirable, in the Orion environment. The air save function captures about half of the ullage air that would normally be vented overboard every time the cabin air-adsorbing and space vacuum-desorbing CAMRAS beds swap functions. The JSC team conducted 1000 hours of on-orbit Amine Swingbed Payload testing in 2013 and early 2014. This paper presents the basics of the payload's design and history, as well as a summary of the test results, including comparisons with prelaunch testing

    Toward three-dimensional in vitro models to study neurovascular unit functions in health and disease

    Full text link
    The high metabolic demands of the brain require an efficient vascular system to be coupled with neural activity to supply adequate nutrients and oxygen. This supply is coordinated by the action of neurons, glial and vascular cells, known collectively as the neurovascular unit, which temporally and spatially regulate local cerebral blood flow through a process known as neurovascular coupling. In many neurodegenerative diseases, changes in functions of the neurovascular unit not only impair neurovascular coupling but also permeability of the blood-brain barrier, cerebral blood flow and clearance of waste from the brain. In order to study disease mechanisms, we need improved physiologically-relevant human models of the neurovascular unit. Advances towards modeling the cellular complexity of the neurovascular unit in vitro have been made using stem-cell derived organoids and more recently, vascularized organoids, enabling intricate studies of non-cell autonomous processes. Engineering and design innovations in microfluidic devices and tissue engineering are progressing our ability to interrogate the cerebrovasculature. These advanced models are being used to gain a better understanding of neurodegenerative disease processes and potential therapeutics. Continued innovation is required to build more physiologically-relevant models of the neurovascular unit encompassing both the cellular complexity and designed features to interrogate neurovascular unit functionality. Keywords: Alzheimer’s disease; cerebrovasculature; in vitro; model; neurodegeneration; neurovascular unit

    A simple proof of the Markoff conjecture for prime powers

    Full text link
    We give a simple and independent proof of the result of Jack Button and Paul Schmutz that the Markoff conjecture on the uniqueness of the Markoff triples (a,b,c), where a, b, and c are in increasing order, holds whenever cc is a prime power.Comment: 5 pages, no figure

    KneeTex: An ontology-driven system for information extraction from MRI reports

    Get PDF
    Background. In the realm of knee pathology, magnetic resonance imaging (MRI) has the advantage of visualising all structures within the knee joint, which makes it a valuable tool for increasing diagnostic accuracy and planning surgical treatments. Therefore, clinical narratives found in MRI reports convey valuable diagnostic information. A range of studies have proven the feasibility of natural language processing for information extraction from clinical narratives. However, no study focused specifically on MRI reports in relation to knee pathology, possibly due to the complexity of knee anatomy and a wide range of conditions that may be associated with different anatomical entities. In this paper we describe KneeTex, an information extraction system that operates in this domain. Methods. As an ontology–driven information extraction system, KneeTex makes active use of an ontology to strongly guide and constrain text analysis. We used automatic term recognition to facilitate the development of a domain–specific ontology with sufficient detail and coverage for text mining applications. In combination with the ontology, high regularity of the sublanguage used in knee MRI reports allowed us to model its processing by a set of sophisticated lexico–semantic rules with minimal syntactic analysis. The main processing steps involve named entity recognition combined with coordination, enumeration, ambiguity and co–reference resolution, followed by text segmentation. Ontology–based semantic typing is then used to drive the template filling process. Results. We adopted an existing ontology, TRAK (Taxonomy for RehAbilitation of Knee conditions), for use within KneeTex. The original TRAK ontology expanded from 1,292 concepts, 1,720 synonyms and 518 relationship instances to 1,621 concepts, 2,550 synonyms and 560 relationship instances. This provided KneeTex with a very fine–grained lexico–semantic knowledge base, which is highly attuned to the given sublanguage. Information extraction results were evaluated on a test set of 100 MRI reports. A gold standard consisted of 1,259 filled template records with the following slots: finding, finding qualifier, negation, certainty, anatomy and anatomy qualifier. KneeTex extracted information with precision of 98.00%, recall of 97.63% and F–measure of 97.81%, the values of which are in line with human–like performance. Conclusions. KneeTex is an open–source, stand–alone application for information extraction from narrative reports that describe an MRI scan of the knee. Given an MRI report as input, the system outputs the corresponding clinical findings in the form of JavaScript Object Notation objects. The extracted information is mapped onto TRAK, an ontology that formally models knowledge relevant for the rehabilitation of knee conditions. As a result, formally structured and coded information allows for complex searches to be conducted efficiently over the original MRI reports, thereby effectively supporting epidemiologic studies of knee conditions

    Selected Computing Research Papers Volume 7 June 2018

    Get PDF
    Contents Critical Evaluation of Arabic Sentimental Analysis and Their Accuracy on Microblogs (Maha Al-Sakran) Evaluating Current Research on Psychometric Factors Affecting Teachers in ICT Integration (Daniel Otieno Aoko) A Critical Analysis of Current Measures for Preventing Use of Fraudulent Resources in Cloud Computing (Grant Bulman) An Analytical Assessment of Modern Human Robot Interaction Systems (Dominic Button) Critical Evaluation of Current Power Management Methods Used in Mobile Devices (One Lekula) A Critical Evaluation of Current Face Recognition Systems Research Aimed at Improving Accuracy for Class Attendance (Gladys B. Mogotsi) Usability of E-commerce Website Based on Perceived Homepage Visual Aesthetics (Mercy Ochiel) An Overview Investigation of Reducing the Impact of DDOS Attacks on Cloud Computing within Organisations (Jabed Rahman) Critical Analysis of Online Verification Techniques in Internet Banking Transactions (Fredrick Tshane

    Nanotechnology in multimodal theranostic capsule endoscopy

    Get PDF
    Video capsule endoscopy (VCE) has become a clinically accepted diagnostic modality in the last 20 years and has established a technological roadmap for other capsule endoscopy (CE) devices, incorporating microscale technology, a local power supply and wireless communication. However, VCE does not provide a therapeutic function and research in therapeutic capsule endoscopy (TCE) has been limited. This paper proposes a new route towards viable TCE based on multiple CE devices including essential nanoscale components. A first device is used for multimodal diagnosis, with quantitative microultrasound as a complement to video imaging. Ultrasound-enhanced fluorescent marking of sites of pathology allows follow-up with a second device for therapy. This is based on fluorescence imaging and ultrasound-mediated targeted drug delivery. Subsequent treatment verification and monitoring with a third device exploits the minimally invasive nature of CE. Clinical implementation of a complete patient pathway remains the subject of research but several key components have been prepared in early prototype form. These are described, along with gaps that remain to be filled
    corecore