4,216 research outputs found
Structure and Function of the Mucus Clearance System of the Lung
In cystic fibrosis (CF), a defect in ion transport results in thick and dehydrated airway mucus, which is difficult to clear, making such patients prone to chronic inflammation and bacterial infections. Physiotherapy using a variety of airway clearance techniques (ACTs) represents a key treatment regime by helping clear the airways of thickened, adhered, mucus and, thus, reducing the impact of lung infections and improving lung function. This article aims to bridge the gap between our understanding of the physiological effects of mechanical stresses elicited by ACTs on airway epithelia and the reported effectiveness of ACTs in CF patients. In the first part of this review, the effects of mechanical stress on airway epithelia are discussed in relation to changes in ion transport and stimulation in airway surface layer hydration. The second half is devoted to detailing the most commonly used ACTs to stimulate the removal of mucus from the airways of patients with CF
2009 Continued Testing of the Orion Atmosphere Revitalization Technology
An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Orion Atmosphere Revitalization System (ARS). In three previous years at this conference, reports were presented on extensive Johnson Space Center (JSC) testing of this technology in a sea-level pressure environment, with simulated and real human metabolic loads, in both open and closed-loop configurations. The test article design was iterated a third time before the latest series of such tests, which was performed in the first half of 2009. The new design incorporates a canister configuration modification for overall unit compactness and reduced pressure drop, as well as a new process flow control valve that incorporates both compressed gas purge and dual-end vacuum desorption capabilities. This newest test article is very similar to the flight article designs. Baseline tests of the new unit were performed to compare its performance to that of the previous test articles. Testing of compressed gas purge operations helped refine launchpad operating condition recommendations developed in earlier testing. Operating conditions used in flight program computer models were tested to validate the model projections. Specific operating conditions that were recommended by the JSC test team based on past test results were also tested for validation. The effects of vacuum regeneration line pressure on resulting cabin conditions was studied for high metabolic load periods, and a maximum pressure is recommende
Amine Swingbed Payload Testing on ISS
One of NASA Johnson Space Center's test articles of the amine-based carbon dioxide (CO2) and water vapor sorbent system known as the CO2 And Moisture Removal Amine Swing-bed, or CAMRAS, was incorporated into a payload on the International Space Station (ISS). The intent of the payload is to demonstrate the spacecraft-environment viability of the core atmosphere revitalization technology baselined for the new Orion vehicle. In addition to the air blower, vacuum connection, and controls needed to run the CAMRAS, the payload incorporates a suite of sensors for scientific data gathering, a water save function, and an air save function. The water save function minimizes the atmospheric water vapor reaching the CAMRAS unit, thereby reducing ISS water losses that are otherwise acceptable, and even desirable, in the Orion environment. The air save function captures about half of the ullage air that would normally be vented overboard every time the cabin air-adsorbing and space vacuum-desorbing CAMRAS beds swap functions. The JSC team conducted 1000 hours of on-orbit Amine Swingbed Payload testing in 2013 and early 2014. This paper presents the basics of the payload's design and history, as well as a summary of the test results, including comparisons with prelaunch testing
Toward three-dimensional in vitro models to study neurovascular unit functions in health and disease
The high metabolic demands of the brain require an efficient vascular system to be coupled with neural activity to supply adequate nutrients and oxygen. This supply is coordinated by the action of neurons, glial and vascular cells, known collectively as the neurovascular unit, which temporally and spatially regulate local cerebral blood flow through a process known as neurovascular coupling. In many neurodegenerative diseases, changes in functions of the neurovascular unit not only impair neurovascular coupling but also permeability of the blood-brain barrier, cerebral blood flow and clearance of waste from the brain. In order to study disease mechanisms, we need improved physiologically-relevant human models of the neurovascular unit. Advances towards modeling the cellular complexity of the neurovascular unit in vitro have been made using stem-cell derived organoids and more recently, vascularized organoids, enabling intricate studies of non-cell autonomous processes. Engineering and design innovations in microfluidic devices and tissue engineering are progressing our ability to interrogate the cerebrovasculature. These advanced models are being used to gain a better understanding of neurodegenerative disease processes and potential therapeutics. Continued innovation is required to build more physiologically-relevant models of the neurovascular unit encompassing both the cellular complexity and designed features to interrogate neurovascular unit functionality.
Keywords: Alzheimer’s disease; cerebrovasculature; in vitro; model; neurodegeneration; neurovascular unit
A simple proof of the Markoff conjecture for prime powers
We give a simple and independent proof of the result of Jack Button and Paul
Schmutz that the Markoff conjecture on the uniqueness of the Markoff triples
(a,b,c), where a, b, and c are in increasing order, holds whenever is a
prime power.Comment: 5 pages, no figure
Inter-similarity between coupled networks
Recent studies have shown that a system composed from several randomly
interdependent networks is extremely vulnerable to random failure. However,
real interdependent networks are usually not randomly interdependent, rather a
pair of dependent nodes are coupled according to some regularity which we coin
inter-similarity. For example, we study a system composed from an
interdependent world wide port network and a world wide airport network and
show that well connected ports tend to couple with well connected airports. We
introduce two quantities for measuring the level of inter-similarity between
networks (i) Inter degree-degree correlation (IDDC) (ii) Inter-clustering
coefficient (ICC). We then show both by simulation models and by analyzing the
port-airport system that as the networks become more inter-similar the system
becomes significantly more robust to random failure.Comment: 4 pages, 3 figure
Space Suit Environment Testing of the Orion Atmosphere Revitalization Technology
An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Orion Atmosphere Revitalization System (ARS). In three previous years at this conference, reports were presented on extensive Johnson Space Center (JSC) testing of this technology. That testing was performed in a sea-level pressure environment with both simulated and real human metabolic loads, and in both open and closed-loop configurations. The Orion ARS is designed to also support space-suited operations in a depressurized cabin, so the next step in developmental testing at JSC was to test the ARS technology in a typical closed space suit-loop environment with low-pressure oxygen inside the process loop and vacuum outside the loop. This was the first instance of low-pressure, high-oxygen, closed-loop testing of the Orion ARS technology, and it was conducted with simulated human metabolic loads in March 2009. The test investigated pressure drops and flow balancing through two different styles of prototype suit umbilical connectors. General swing-bed performance was tested with both umbilical configurations, as well as with a short jumper line installed in place of the umbilicals. Other interesting results include observations on the thermal effects of swing-bed operation in a vacuum environment and a recommendation of cycle time to maintain acceptable suit atmospheric CO2 and moisture levels
Applications of p-deficiency and p-largeness
We use Schlage-Puchta's concept of p-deficiency and Lackenby's property of
p-largeness to show that a group having a finite presentation with p-deficiency
greater than 1 is large, which implies that Schlage-Puchta's infinite finitely
generated p-groups are not finitely presented. We also show that for all primes
p at least 7, any group having a presentation of p-deficiency greater than 1 is
Golod-Shafarevich, and has a finite index subgroup which is Golod-Shafarevich
for the remaining primes. We also generalise a result of Grigorchuk on Coxeter
groups to odd primes.Comment: 23 page
The technification of domestic abuse: Methods, tools and criminal justice responses
Methods of domestic abuse are progressively incorporating computer misuse and other related online offences and digital tools, escalating opportunities for perpetrators to monitor, threaten and humiliate their victims. Drawing on empirical research involving media case study analysis, a technology review and interviews undertaken with 21 professionals and service providers supporting domestic abuse victims, this article outlines the context in England and Wales regarding the methods, tools and criminal justice responses involved in what we conceptualise as the technification of domestic abuse. As technology continues to deeply intertwine with our daily lives, it is undeniable that its involvement within domestic abuse encompasses harmful behaviours that pose an increasing risk of harm, and unless effective criminal justice interventions are implemented, this risk will inevitably grow even further
- …