17,860 research outputs found

    Water diffusion in rough carbon nanotubes

    Get PDF
    We use molecular dynamics simulations to study the diffusion of water inside deformed carbon nanotubes with different degrees of deformation at 300 K. We found that the number of hydrogen bonds that water forms depends on nanotube topology, leading to enhancement or suppression of water diffusion. The simulation results reveal that more realistic nanotubes should be considered to understand the confined water diffusion behavior, at least for the narrowest nanotubes, when the interaction between water molecules and carbon atoms is relevant.Comment: 17 pages, 8 figure

    The Electromagnetic Form Factor of the Kaon in the Light-Front Approach

    Full text link
    The kaon electromagnetic form factor is calculated within a light-front constituent quark model (LFCQM). The electromagnetic components of the current are extracted from the Feynman triangle diagram within the light-front approach. We also obtain the electroweak decay constant and the charge radius for the kaon in the light-front approach. In this work, the kaon observables are calculated and a fairly good agreement is obtained with a very higher accuracy when compared with the experimental data.Comment: Paper with 4 pages, 1 figure, reference: XII HADRON PHYSICS Conference - to appear in AIP Conference Proceeding

    Diffusion behavior of water confined in deformed carbon nanotubes

    Full text link
    We use molecular dynamics simulations to study the diffusion of water inside deformed carbon nanotubes, with different degrees of eccentricity at 300K. We found a water structural transition between tubular-like to single-file for the (7,7) nanotubes associated with a change from a high to low mobility regimes. The water which in the undeformed (9,9) nanotubes is frozen, becomes liquid for the distortion above a certain threshold. These water diffusion enhancement (suppresion) is related to a reduction (increase) in the number of hydrogen bonds. This suggests that the shape of the nanotube is a particularly important ingredient when considering the dynamical and structural properties of confined water.Comment: 16 pages, 9 figure

    Can domain-based local pair natural orbitals approaches accurately predict phosphorescence energies?

    Get PDF
    Since the discovery of the peculiar conducting and optical properties of aromatics, many efforts have been made to characterize and predict their phosphorescence. This physical process is exploited in modern Organic Emitting Light Diodes (OLEDs), and it is also one of the processes decreasing the efficiency of Dye-sensitized solar cells (DSSCs). Herein, we propose a computational strategy for the accurate calculation of singlet–triplet gaps of aromatic compounds, which provides results that are in excellent agreement with available experimental data. Our approach relies on the domain-based local pair natural orbital (DLPNO) variant of the “gold standard” CCSD(T) method. The convergence of our results with respect to the key technical parameters of the calculation, such as the basis set used, the approximations employed in the perturbative triples correction, and the dimension of the PNOs space, was thoroughly discussed

    Electromagnetic Structure of the Pion

    Full text link
    In this work, we analyze the electromagnetic structure of the pion. We calculate its electromagnetic radius and electromagnetic form factor in low and intermediate momentum range. Such observables are determined by means of a theoretical model that takes into account the constituent quark and antiquark of the pion within the formalism of light-front field theory. In particular, we consider a nonsymmetrical vertex in this model, with which we calculate the electromagnetic form factor of the pion in an optimized way, so that we obtain a value closer to the experimental charge radius of the pion. The theoretical calculations are also compared with the most recent experimental data involving the pion electromagnetic form factor and the results show very good agreement.Comment: Paper with 4 pages, 1 figure, presented in XII HADRON PHYSICS Conference - to appear in AIP Conference Proceeding

    Theory of interlayer exchange interactions in magnetic multilayers

    Full text link
    This paper presents a review of the phenomenon of interlayer exchange coupling in magnetic multilayers. The emphasis is put on a pedagogical presentation of the mechanism of the phenomenon, which has been successfully explained in terms of a spin-dependent quantum confinement effect. The theoretical predictions are discussed in connection with corresponding experimental investigations.Comment: 18 pages, 4 PS figures, LaTeX with IOP package; v2: ref. added. Further (p)reprints available from http://www.mpi-halle.de/~theory

    Exact Foldy-Wouthuysen transformation for gravitational waves and magnetic field background

    Full text link
    We consider an exact Foldy-Wouthuysen transformation for the Dirac spinor field on the combined background of a gravitational wave and constant uniform magnetic field. By taking the classical limit of the spinor field Hamiltonian we arrive at the equations of motion for the non-relativistic spinning particle. Two different kinds of the gravitational fields are considered and in both cases the effect of the gravitational wave on the spinor field and on the corresponding spinning particle may be enforced by the sufficiently strong magnetic field. This result can be relevant for the astrophysical applications and, in principle, useful for creating the gravitational wave detectors based on atomic physics and precise interferometry

    Diagrams for heat kernel expansions

    Full text link
    A diagramatic heat kernel expansion technique is presented. The method is especially well suited to the small-derivative expansion of the heat kernel, but it can also be used to reproduce the results obtained by the approach known as covariant perturbation theory. The new technique gives an expansion for the heat kernel at coincident points. It can also be used to obtain the derivative of the heat kernel and this is useful for evaluating the expectation values of the stress-energy tensor.Comment: 17 pages, 4 figures, ReVTe
    • …
    corecore