3,171 research outputs found
Modeling one-dimensional island growth with mass-dependent detachment rates
We study one-dimensional models of particle diffusion and
attachment/detachment from islands where the detachment rates gamma(m) of
particles at the cluster edges increase with cluster mass m. They are expected
to mimic the effects of lattice mismatch with the substrate and/or long-range
repulsive interactions that work against the formation of long islands.
Short-range attraction is represented by an overall factor epsilon<<1 in the
detachment rates relatively to isolated particle hopping rates [epsilon ~
exp(-E/T), with binding energy E and temperature T]. We consider various
gamma(m), from rapidly increasing forms such as gamma(m) ~ m to slowly
increasing ones, such as gamma(m) ~ [m/(m+1)]^b. A mapping onto a column
problem shows that these systems are zero-range processes, whose steady states
properties are exactly calculated under the assumption of independent column
heights in the Master equation. Simulation provides island size distributions
which confirm analytic reductions and are useful whenever the analytical tools
cannot provide results in closed form. The shape of island size distributions
can be changed from monomodal to monotonically decreasing by tuning the
temperature or changing the particle density rho. Small values of the scaling
variable X=epsilon^{-1}rho/(1-rho) favour the monotonically decreasing ones.
However, for large X, rapidly increasing gamma(m) lead to distributions with
peaks very close to and rapidly decreasing tails, while slowly increasing
gamma(m) provide peaks close to /2$ and fat right tails.Comment: 16 pages, 6 figure
Dynamics of two atoms coupled to a cavity field
We investigate the interaction of two two-level atoms with a single mode
cavity field. One of the atoms is exactly at resonance with the field, while
the other is well far from resonance and hence is treated in the dispersive
limit. We find that the presence of the non-resonant atom produces a shift in
the Rabi frequency of the resonant atom, as if it was detuned from the field.
We focus on the discussion of the evolution of the state purity of each atom.Comment: LaTex, 2 figure
Quantum bit detector
We propose and analyze an experimental scheme of quantum nondemolition
detection of monophotonic and vacuum states in a superconductive toroidal
cavity by means of Rydberg atoms.Comment: 4 pages, 3 figure
Precision Measurements of d(d,p)t and d(d,n)^3He Total Cross Sections at Big-Bang Nucleosynthesis Energies
Recent Wilkinson Microwave Anisotropy Probe (WMAP) measurements have
determined the baryon density of the Universe with a precision of
about 4%. With tightly constrained, comparisons of Big Bang
Nucleosynthesis (BBN) abundance predictions to primordial abundance
observations can be made and used to test BBN models and/or to further
constrain abundances of isotopes with weak observational limits. To push the
limits and improve constraints on BBN models, uncertainties in key nuclear
reaction rates must be minimized. To this end, we made new precise measurements
of the d(d,p)t and d(d,n)^3He total cross sections at lab energies from 110 keV
to 650 keV.
A complete fit was performed in energy and angle to both angular distribution
and normalization data for both reactions simultaneously. By including
parameters for experimental variables in the fit, error correlations between
detectors, reactions, and reaction energies were accurately tabulated by
computational methods. With uncertainties around 2% +/- 1% scale error, these
new measurements significantly improve on the existing data set. At relevant
temperatures, using the data of the present work, both reaction rates are found
to be about 7% higher than those in the widely used Nuclear Astrophysics
Compilation of Reaction Rates (NACRE). These data will thus lead not only to
reduced uncertainties, but also to modifications in the BBN abundance
predictions.Comment: 15 pages, 11 figures, minor editorial change
Nonlocal edge state transport in the quantum spin Hall state
We present direct experimental evidence for nonlocal transport in HgTe
quantum wells in the quantum spin Hall regime, in the absence of any external
magnetic field. The data conclusively show that the non-dissipative quantum
transport occurs through edge channels, while the contacts lead to
equilibration between the counter-propagating spin states at the edge. We show
that the experimental data agree quantitatively with the theory of the quantum
spin Hall effect.Comment: 13 pages, 4 figure
Evidence for Three Nucleon Force Effects in p-d Elastic Scattering
A new measurement of the p-d differential cross section at Ep= 1 MeV has been
performed. These new data and older data sets at energies below the deuteron
breakup are compared to calculations using the two-nucleon Argonne v18 and the
three-nucleon Urbana IX potentials. A quantitative estimate of the capability
of these interactions to describe the data is given in terms of a chi^2
analysis. The chi^2 per datum drastically improves when the three-nucleon
interaction is included in the Hamiltonian.Comment: 13 pages, 5 figures, to be published in Phys. Rev.
Strain-Dependence of Surface Diffusion: Ag on Ag(111) and Pt(111)
Using density-functional theory with the local-density approximation and the
generalized gradient approximation we compute the energy barriers for surface
diffusion for Ag on Pt(111), Ag on one monolayer of Ag on Pt(111), and Ag on
Ag(111). The diffusion barrier for Ag on Ag(111) is found to increase linearly
with increasing lattice constant. We also discuss the reconstruction that has
been found experimentally when two Ag layers are deposited on Pt(111). Our
calculations explain why this strain driven reconstruction occurs only after
two Ag layers have been deposited.Comment: 4 pages, 3 figures, Phys. Rev. B 55 (1997), in pres
Low-energy p-d Scattering: High Precision Data, Comparisons with Theory, and Phase-Shift Analyses
Angular distributions of sigma(theta), A_y, iT_11, T_20, T_21, and T_22 have
been measured for d-p scattering at E_c.m.=667 keV. This set of high-precision
data is compared to variational calculations with the nucleon-nucleon potential
alone and also to calculations including a three-nucleon (3N) potential.
Agreement with cross-section and tensor analyzing power data is excellent when
a 3N potential is used. However, a comparison between the vector analyzing
powers reveals differences of approximately 40% in the maxima of the angular
distributions which is larger than reported at higher energies for both p-d and
n-d scattering. Single-energy phase-shift analyses were performed on this data
set and a similar data set at E_c.m.=431.3 keV. The role of the different
phase-shift parameters in fitting these data is discussed.Comment: 18 pages, 6 figure
- …
