11 research outputs found

    Oncostatin M promotes STAT3 activation, VEGF production, and invasion in osteosarcoma cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have previously demonstrated that both canine and human OSA cell lines, as well as 8 fresh canine OSA tumor samples, exhibit constitutive phosphorylation of STAT3, and that this correlates with enhanced expression of matrix metalloproteinase-2 (MMP2). While multiple signal transduction pathways can result in phosphorylation of STAT3, stimulation of the cytokine receptor gp130 through either IL-6 or Oncostatin M (OSM) is the most common mechanism through which STAT3 is activated. The purpose of this study was to evaluate the role of IL-6 and OSM stimulation on both canine and human OSA cell lines to begin to determine the role of these cytokines in the biology of OSA.</p> <p>Methods</p> <p>RT-PCR and Western blotting were used to interrogate the consequences of OSM and IL-6 stimulation of OSA cell lines. OSA cells were stimulated with OSM and/or hepatocyte growth factor (HGF) and the effects on MMP2 activity (gel zymography), proliferation (CyQUANT), invasion (Matrigel transwell assay), and VEGF production (Western blotting, ELISA) were assessed. The small molecule STAT3 inhibitor LLL3 was used to investigate the impact of STAT3 inhibition following OSM stimulation of OSA cells.</p> <p>Results</p> <p>Our data demonstrate that the OSM receptor (OSMR), but not IL-6 or its receptor, is expressed by all human and canine OSA cell lines and canine OSA tumor samples; additionally, OSM expression was noted in all tumor samples. Treatment of OSA cell lines with OSM induced phosphorylation of STAT3, Src, and JAK2. OSM stimulation also resulted in a dose dependent increase in MMP2 activity and VEGF expression that was markedly reduced following treatment with the small molecule STAT3 inhibitor LLL3. Lastly, OSM stimulation of OSA cell lines enhanced invasion through Matrigel, particularly in the presence of rhHGF. In contrast, both OSM and HGF stimulation of OSA cell lines did not alter their proliferative capacity.</p> <p>Conclusions</p> <p>These data indicate OSM stimulation of human and canine OSA cells induces STAT3 activation, thereby enhancing the expression/activation of MMP2 and VEGF, ultimately promoting invasive behavior and tumor angiogenesis. As such, OSM and its receptor may represent a novel target for therapeutic intervention in OSA.</p

    Selective inhibition of BET bromodomain epigenetic signalling interferes with the bone-associated tumour vicious cycle

    Get PDF
    The vicious cycle established between bone-associated tumours and bone resorption is the central problem with therapeutic strategies against primary bone tumours and bone metastasis. Here we report data to support inhibition of BET bromodomain proteins as a promising therapeutic strategy that target simultaneously the three partners of the vicious cycle. Treatment with JQ1, a BET bromodomain inhibitor, reduces cell viability of osteosarcoma cells and inhibits osteoblastic differentiation both in vitro and in vivo. These effects are associated with transcriptional silencing of MYC and RUNX2, resulting from the depletion of BRD4 from their respective loci. Moreover, JQ1 also inhibits osteoclast differentiation by interfering with BRD4-dependent RANKL activation of NFATC1 transcription. Collectively, our data indicate that JQ1 is a potent inhibitor of osteoblast and osteoclast differentiation as well as bone tumour development

    Pharmacological inhibition of interleukin-15 prevents colitis and associated bone loss in IL-10 knockout mice

    No full text
    Bone loss secondary to inflammatory bowel diseases (IBD) is largely explained by activated T cells producing cytokines that trigger osteoclastogenesis and accelerate bone resorptionwhile inhibiting bone formation. In IBD, elevated expression of interleukin (IL)-15, a T cell growth factor, plays a central role in T cell activation, pro-inflammatory cytokine production and the development of colitis. We previously reported that IL-15 enhances RANKL-induced osteoclastogenesis and that an IL-15 antagonist, CRB-15, prevents weight and bone loss in a mousemodel of dextran sulfate sodium-induced colitis.We hypothesized that inhibition of IL-15 signalingmight prevent bone loss in IL-10 deficient (IL10−/−) mice, that develop spontaneous bowel inflammation associatedwith osteopeniawhen they are no longer raised under germ-free conditions.Mice received anIL-15 antagonist (CRB-15, 5 μg/day, n=5) or IgG2a (5 μg/day, n=4) fromweek 10 to 14 of age. The severity of colitis was assessed by histology and bowel cytokine gene expression by real time PCR. Bone mass and architecturewere evaluated by ex vivo DXA on femur and micro-computed tomography on femur and vertebra. Bodyweight gainwas similar in the two groups. After 4 weeks, colonwas 29% shorter in CRB-15 treatedmice (p&lt;0.006), a sign of reduced inflammation. Histological analysis indicated a transmural infiltration of inflammatory cells, lymphoepithelial lesions and increased size of villi (histological score=4/6) in IgG2a treated mice, whereas colon from CRB-15 treated mice exhibited mild infiltration of inflammatory cells of the lamina propria, no mucosal damages and a minimal increased size of villi (histological score=1.6/6). Levels of TNFα, IL-17 and IL-6 mRNA in the colon were significantly reduced in CRB-15 treated mice (p&lt;0.04 vs IgG2), indicating a decrease in colon inflammation. CRB-15 improved femur BMD (+10.6% vs IgG2a, p&lt;0.002), vertebral trabecular bone volume fraction (BV/TV, +19.7% vs IgG2a, p&lt;0.05) and thickness (+11.6% vs IgG2a, p&lt;0.02). A modest but not significant increase in trabecular BV/TV was observed at the distal femur. Cortical thicknesswas also higher at themidshaft femur in CRB-15 treatedmice (+8.3% vs IgG2a, p&lt;0.02). In conclusion, we confirm and extend our results about the effects of CRB-15 in colitis. Antagonizing IL-15 may exert favorable effects on intestinal inflammation and prevent bone loss and microarchitecture alterations induced by colitis. This article is part of a Special Issue entitled ECTS 2011. Disclosure of interest: B. Brounais-Le Royer Grant / Research Support from Novartis Consumer Health Foundation, S. Ferrari-Lacraz: none declared, D. Velin: none declared, X. Zheng: none declared, S. Ferrari: none declared, D. Pierroz: none declared

    Novel Anti-Cancer Strategy in Bone Tumors by Targeting Molecular and Cellular Modulators of Bone Resorption

    No full text
    Tumor cells alter the balanced process of bone formation and bone resorption mediated respectively by osteoblasts and osteoclasts, leading to the disruption of the normal equilibrium and resulting in a spectrum of osteolytic to osteoblastic lesions. This review will summarize research on molecules that play direct and essential roles in the differentiation and activity of osteoclasts, and the role of these molecules in bone destruction caused by cancer. Results from experimental models suggest that the Receptor Activator of NF-kB Ligand (RANKL), a member of the TNF superfamily is a common effector of bony lesions in osteolysis caused by primary and secondary bone tumors. Therefore, osteoclast represents an attractive target across a broad range of tumors that develop in bone. Elucidation of the mechanisms of RANKL interactions with its activator (RANK) and decoy (osteoprotegerin: OPG) receptors has enable the development of pharmacological inhibitors of RANKL (and of its signalling pathway) which have been recently patented, with potential for the treatment of cancer-induced bone disease. Blocking bone resorption by specific other drugs such as bisphosphonates, inhibitors of cathepsin K (the main enzyme involved in bone resorption mechanisms) or signalling pathways regulating osteoclast differentiation and activation is also a promising target for the treatment of osteolysis associated to bone tumors

    Long term oncostatin M treatment induces an osteocyte-like differentiation on osteosarcoma and calvaria cells

    No full text
    Previous in vitro studies on primary osteoblastic and osteosarcoma cells (normal and transformed osteoblasts) have shown that oncostatin M (OSM), a member of the interleukin-6 family, possesses cytostatic and pro-apoptotic effects in association with complex and poorly understood activities on osteoblast differentiation. In this study, we use rat osteosarcoma cells transduced with lentiviral particles encoding OSM (lvOSM) to stably produce this cytokine. We show that after several weeks of culture, transduced OSRGA and ROS 17/2.8 cells are growth inhibited and sensitized to apoptosis induced by the kinase inhibitor Staurosporine (Sts). Moreover, this long term OSM treatment induces (i) a decrease in osteoblastic markers, (ii) morphological changes leading to an elongated and/or stellate shape and (iii) an increase in osteocytic markers (sclerostin and/or E11), suggesting an osteocyte-like differentiation. We also show that non transformed rat calvaria cells transduced with lvOSM differentiate into stellate shaped cells expressing sclerostin, E11, Phex and functional hemichannels. Together, these results indicate that osteosarcoma cells stably producing OSM do not develop resistance to this cytokine and thus could be a valuable new tool to study the anti-cancer effect of OSM in vivo. Moreover, OSM-over-expressing osteoblastic cells differentiate into osteocyte-like cells, the major cellular contingent in bone, providing new culture conditions for this cell type which is difficult to obtain in vitro

    Sensitization of osteosarcoma cells to apoptosis by oncostatin M depends on STAT5 and p53

    No full text
    Oncostatin M (OSM), a cytokine of the interleukin-6 family, induces growth arrest and differentiation of osteoblastic cells into glial-like/osteocytic cells. Here, we asked whether OSM regulates apoptosis of normal or transformed (osteosarcoma) osteoblasts. We show that OSM sensitizes cells to apoptosis induced by various death inducers such as staurosporine, ultraviolet or tumor necrosis factor-alpha. Apoptosis is mediated by the mitochondrial pathway, with release of cytochrome c from the mitochondria to the cytosol and activation of caspases-9 and -3. DNA micro-arrays revealed that OSM modulates the expression of Bax, Bad, Bnip3, Bcl-2 and Mcl-1. Pharmacological inhibitors, dominant-negative signal transducer and activator of transcriptions (STATs), stable RNA interference and knockout cells indicated that the transcription factors p53 and STAT5, which are activated by OSM, are implicated in the sensitization to apoptosis, being responsible for Bax induction and Bcl-2 reduction, respectively. These results indicate that, in addition to growth arrest and induced differentiation, OSM also sensitizes normal and transformed osteoblasts to apoptosis by a mechanism implicating (i) activation and nuclear translocation of STAT5 and p53 and (ii) an increased Bax/Bcl-2 ratio. Therefore, association of OSM with kinase inhibitors such as Sts represents new therapeutic opportunities for wild-type p53 osteosarcoma
    corecore