709 research outputs found

    Star Formation in Dwarf Galaxies

    Get PDF
    We explore mechanisms for the regulation of star formation in dwarf galaxies. We concentrate primarily on a sample in the Virgo cluster, which has HI and blue total photometry, for which we collected Hα\alpha data at the Wise Observatory. We find that dwarf galaxies do not show the tight correlation of the surface brightness of Hα\alpha (a star formation indicator) with the HI surface density, or with the ratio of this density to a dynamical timescale, as found for large disk or starburst galaxies. On the other hand, we find the strongest correlation to be with the average blue surface brightness, indicating the presence of a mechanism regulating the star formation by the older (up to 1 Gyr) stellar population if present, or by the stellar population already formed in the present burst.Comment: 15 pages (LATEX aasms4 style) and three postscript figures, accepted for publication in the Astrophysical Journa

    Neutral Hydrogen Mapping of Virgo Cluster Blue Compact Dwarf Galaxies

    Full text link
    A new installment of neutral hydrogen mappings of Blue Compact Dwarf galaxies, as defined by optical morphology, in and near the Virgo cluster is presented. The primary motivation was to search for outlying clouds of HI as potential interactive triggers of the enhanced star formation, and therefore the mapped galaxies were selected for large HI} mass, large optical diameter, and large velocity profile width. Approximately half the sample proved to have one or more small, low column density star-free companion clouds, either detached or appearing as an appendage in our maps, at resolution of order 4 kpc. Comparison is made to a sample of similarly mapped field BCD galaxies drawn from the literature; however, the Virgo cluster sample of mapped BCDs is still too small for conclusive comparisons to be made. We found, on the one hand, little or no evidence for ram pressure stripping nor, on the other, for extremely extended low column density HI envelopes. The HI rotation curves in most cases rise approximately linearly, and slowly, as far out as we can trace the gas.Comment: To appear in AJ, Dec. 200

    The polar ring galaxy AM1934-563 revisited

    Full text link
    We report long-slit spectroscopic observations of the dust-lane polar-ring galaxy AM1934-563 obtained with the Southern African Large Telescope (SALT) during its performance-verification phase. The observations target the spectral region of the Ha, [NII] and [SII] emission-lines, but show also deep NaI stellar absorption lines that we interpret as produced by stars in the galaxy. We derive rotation curves along the major axis of the galaxy that extend out to about 8 kpc from the center for both the gaseous and the stellar components, using the emission and absorption lines. We derive similar rotation curves along the major axis of the polar ring and point out differences between these and the ones of the main galaxy. We identify a small diffuse object visible only in Ha emission and with a low velocity dispersion as a dwarf HII galaxy and argue that it is probably metal-poor. Its velocity indicates that it is a fourth member of the galaxy group in which AM1934-563 belongs. We discuss the observations in the context of the proposal that the object is the result of a major merger and point out some observational discrepancies from this explanation. We argue that an alternative scenario that could better fit the observations may be the slow accretion of cold intergalactic gas, focused by a dense filament of galaxies in which this object is embedded (abridged).Comment: 19 pages, 13 figures, submitted to MNRAS. Some figures were bitmapped to reduce the size. Full resolution version is available from http://www.saao.ac.za/~akniazev/pub/AM1934_563.pd

    HeMIS: Hetero-Modal Image Segmentation

    Full text link
    We introduce a deep learning image segmentation framework that is extremely robust to missing imaging modalities. Instead of attempting to impute or synthesize missing data, the proposed approach learns, for each modality, an embedding of the input image into a single latent vector space for which arithmetic operations (such as taking the mean) are well defined. Points in that space, which are averaged over modalities available at inference time, can then be further processed to yield the desired segmentation. As such, any combinatorial subset of available modalities can be provided as input, without having to learn a combinatorial number of imputation models. Evaluated on two neurological MRI datasets (brain tumors and MS lesions), the approach yields state-of-the-art segmentation results when provided with all modalities; moreover, its performance degrades remarkably gracefully when modalities are removed, significantly more so than alternative mean-filling or other synthesis approaches.Comment: Accepted as an oral presentation at MICCAI 201

    Star Formation in Sculptor Group Dwarf Irregular Galaxies and the Nature of "Transition" Galaxies

    Full text link
    We present new H-alpha narrow band imaging of the HII regions in eight Sculptor Group dwarf irregular (dI) galaxies. Comparing the Sculptor Group dIs to the Local Group dIs, we find that the Sculptor Group dIs have, on average, lower values of SFR when normalized to either galaxy luminosity or gas mass (although there is considerable overlap between the two samples). The properties of ``transition'' (dSph/dIrr) galaxies in Sculptor and the Local Group are also compared and found to be similar. The transition galaxies are typically among the lowest luminosities of the gas rich dwarf galaxies. Relative to the dwarf irregular galaxies, the transition galaxies are found preferentially nearer to spiral galaxies, and are found nearer to the center of the mass distribution in the local cloud. While most of these systems are consistent with normal dI galaxies which currently exhibit temporarily interrupted star formation, the observed density-morphology relationship (which is weaker than that observed for the dwarf spheroidal galaxies) indicates that environmental processes such as ``tidal stirring'' may play a role in causing their lower SFRs.Comment: 35 pages, 10 figures, accepted for Feb 2003 AJ, companion to astro-ph/021117

    On the Structural Differences between Disk and Dwarf Galaxies

    Full text link
    Gas-rich dwarf and disk galaxies overlap in numerous physical quantities that make their classification subjective. We report the discovery of a separation between dwarfs and disks into two unique sequences in the mass (luminosity) versus scale length plane. This provides an objective classification scheme for late-type galaxies that only requires optical or near-IR surface photometry of a galaxy. Since the baryonic Tully-Fisher relation for these samples produces a continuous relation between baryonic mass and rotational velocity, we conclude that the difference between dwarfs and disks must be because of their distribution of stellar light such that dwarfs are more diffuse than disk galaxies. This structural separation may be due to a primordial difference between low and high mass galaxies or produced by hierarchical mergers where disks are built up from dwarfs. Structural differences between dwarf and disk galaxies may also be driven by the underlying kinematics where the strong rotation in disks produces an axial symmetric object that undergoes highly efficient star formation in contrast to the lower rotation, more disordered motion of dwarfs that produces a diffuse, triaxial object with a history of inefficient star formation.Comment: 16 pages, 2 figures, AJ in press, AASTeX5.

    Stromgren Photometry from z=0 to z~1. The Method

    Get PDF
    We use rest-frame Stromgren photometry to observe clusters of galaxies in a self-consistent manner from z=0 to z=0.8. Stromgren photometry of galaxies is an efficient compromise between standard broad-band photometry and spectroscopy, in the sense that it is more sensitive to subtle variations in spectral energy distributions than the former, yet much less time-consuming than the latter. Principal Component Analysis (PCA) is used to extract maximum information from the Stromgren data. By calibrating the Principal Components using well-studied galaxies (and stellar population models), we develop a purely empirical method to detect, and subsequently classify, cluster galaxies at all redshifts smaller than 0.8. Interlopers are discarded with unprecedented efficiency (up to 100%). The first Principal Component essentially reproduces the Hubble Sequence, and can thus be used to determine the global star formation history of cluster members. The (PC2, PC3) plane allows us to identify Seyfert galaxies (and distinguish them from starbursts) based on photometric colors alone. In the case of E/S0 galaxies with known redshift, we are able to resolve the age-dust- metallicity degeneracy, albeit at the accuracy limit of our present observations. This technique will allow us to probe galaxy clusters well beyond their cores and to fainter magnitudes than spectroscopy can achieve. We are able to directly compare these data over the entire redshift range without a priori assumptions because our observations do not require k-corrections. The compilation of such data for different cluster types over a wide redshift range is likely to set important constraints on the evolution of galaxies and on the clustering process.Comment: 35 pages, 18 figures, accepted by ApJ

    Lopsidedness in dwarf irregular galaxies

    Get PDF
    We quantify the amplitude of the lopsidedness, the azimuthal angular asymmetry index, and the concentration of star forming regions, as represented by the distribution of the Hα\alpha emission, in a sample of 78 late-type irregular galaxies. We bin the observed galaxies in two groups representing blue compact galaxies (BCDs) and low surface brightness dwarf galaxies (LSBs). The light distribution is analysed with a novel algorithm, which allows detection of details in the light distribution pattern. We find that while the asymmetry of the underlying continuum light, representing the older stellar generations, is relatively small, the Hα\alpha emission is very asymmetric and is correlated in position angle with the continuum light. We test a model of random star formation over the extent of a galaxy by simulating HII regions in artificial dwarf galaxies. The implication is that random star formation over the full extent of a galaxy may be generated in LSB dwarf-irregular galaxies but not in BCD galaxies.Comment: 42 pages, LaTex. Accepted by: MNRAS, 13 Mar 200
    • …
    corecore