602 research outputs found

    Double bracket dissipation in kinetic theory for particles with anisotropic interactions

    Full text link
    We derive equations of motion for the dynamics of anisotropic particles directly from the dissipative Vlasov kinetic equations, with the dissipation given by the double bracket approach (Double Bracket Vlasov, or DBV). The moments of the DBV equation lead to a nonlocal form of Darcy's law for the mass density. Next, kinetic equations for particles with anisotropic interaction are considered and also cast into the DBV form. The moment dynamics for these double bracket kinetic equations is expressed as Lie-Darcy continuum equations for densities of mass and orientation. We also show how to obtain a Smoluchowski model from a cold plasma-like moment closure of DBV. Thus, the double bracket kinetic framework serves as a unifying method for deriving different types of dynamics, from density--orientation to Smoluchowski equations. Extensions for more general physical systems are also discussed.Comment: 19 pages; no figures. Submitted to Proc. Roy. Soc.

    Algebraic geometric methods for the stabilizability and reliability of multivariable and of multimode systems

    Get PDF
    The extent to which feedback can alter the dynamic characteristics (e.g., instability, oscillations) of a control system, possibly operating in one or more modes (e.g., failure versus nonfailure of one or more components) is examined

    Inverse moment problem for elementary co-adjoint orbits

    Full text link
    We give a solution to the inverse moment problem for a certain class of Hessenberg and symmetric matrices related to integrable lattices of Toda type.Comment: 13 page

    A cautionary note on methods of comparing programmatic efficiency between two or more groups of DMUs in data envelopment analysis

    Get PDF
    In some applications of data envelopment analysis (DEA) there may be doubt as to whether all the DMUs form a single group with a common efficiency distribution. The Mann-Whitney rank statistic has been used to evaluate if two groups of DMUs come from a common efficiency distribution under the assumption of them sharing a common frontier and to test if the two groups have a common frontier. These procedures have subsequently been extended using the Kruskal-Wallis rank statistic to consider more than two groups. This technical note identifies problems with the second of these applications of both the Mann-Whitney and Kruskal-Wallis rank statistics. It also considers possible alternative methods of testing if groups have a common frontier, and the difficulties of disaggregating managerial and programmatic efficiency within a non-parametric framework. © 2007 Springer Science+Business Media, LLC

    Decoherence Control in Open Quantum System via Classical Feedback

    Get PDF
    In this work we propose a novel strategy using techniques from systems theory to completely eliminate decoherence and also provide conditions under which it can be done so. A novel construction employing an auxiliary system, the bait, which is instrumental to decoupling the system from the environment is presented. Our approach to decoherence control in contrast to other approaches in the literature involves the bilinear input affine model of quantum control system which lends itself to various techniques from classical control theory, but with non-trivial modifications to the quantum regime. The elegance of this approach yields interesting results on open loop decouplability and Decoherence Free Subspaces(DFS). Additionally, the feedback control of decoherence may be related to disturbance decoupling for classical input affine systems, which entails careful application of the methods by avoiding all the quantum mechanical pitfalls. In the process of calculating a suitable feedback the system has to be restructured due to its tensorial nature of interaction with the environment, which is unique to quantum systems. The results are qualitatively different and superior to the ones obtained via master equations. Finally, a methodology to synthesize feedback parameters itself is given, that technology permitting, could be implemented for practical 2-qubit systems to perform decoherence free Quantum Computing.Comment: 17 pages, 4 Fig

    Young people's attitudes to religious diversity : quantitative approaches from social psychology and empirical theology

    Get PDF
    This essay discusses the design of the quantitative component of the ‘Young People’s Attitudes to Religious Diversity’ project, conceived by Professor Robert Jackson within the Warwick Religions and Education Research Unit, and presents some preliminary findings from the data. The quantitative component followed and built on the qualitative component within a mixed method design. The argument is advanced in seven steps: introducing the major sources of theory on which the quantitative approach builds from the psychology of religion and from empirical theology; locating the empirical traditions of research among young people that have shaped the study; clarifying the notions and levels of measurement employed in the study anticipating the potential for various forms of data analysis; discussing some of the established measures incorporated in the survey; defining the ways in which the sample was structured to reflect the four nations of the UK, and London; illustrating the potential within largely descriptive cross-tabulation forms of analysis; and illustrating the potential within more sophisticated multivariate analytic models

    An argument for pandemic risk management using a multidisciplinary One Health approach to governance: an Australian case study

    Get PDF
    The emergence of SARS-CoV-2 and the subsequent COVID-19 pandemic has resulted in significant global impact. However, COVID-19 is just one of several high-impact infectious diseases that emerged from wildlife and are linked to the human relationship with nature. The rate of emergence of new zoonoses (diseases of animal origin) is increasing, driven by human-induced environmental changes that threaten biodiversity on a global scale. This increase is directly linked to environmental drivers including biodiversity loss, climate change and unsustainable resource extraction. Australia is a biodiversity hotspot and is subject to sustained and significant environmental change, increasing the risk of it being a location for pandemic origin. Moreover, the global integration of markets means that consumption trends in Australia contributes to the risk of disease spill-over in our regional neighbours in Asia-Pacific, and beyond. Despite the clear causal link between anthropogenic pressures on the environment and increasing pandemic risks, Australia’s response to the COVID-19 pandemic, like most of the world, has centred largely on public health strategies, with a clear focus on reactive management. Yet, the span of expertise and evidence relevant to the governance of pandemic risk management is much wider than public health and epidemiology. It involves animal/wildlife health, biosecurity, conservation sciences, social sciences, behavioural psychology, law, policy and economic analyses to name just a few. The authors are a team of multidisciplinary practitioners and researchers who have worked together to analyse, synthesise, and harmonise the links between pandemic risk management approaches and issues in different disciplines to provide a holistic overview of current practice, and conclude the need for reform in Australia. We discuss the adoption of a comprehensive and interdisciplinary ‘One Health’ approach to pandemic risk management in Australia. A key goal of the One Health approach is to be proactive in countering threats of emerging infectious diseases and zoonoses through a recognition of the interdependence between human, animal, and environmental health. Developing ways to implement a One Health approach to pandemic prevention would not only reduce the risk of future pandemics emerging in or entering Australia, but also provide a model for prevention strategies around the world

    Time Optimal Control in Spin Systems

    Get PDF
    In this paper, we study the design of pulse sequences for NMR spectroscopy as a problem of time optimal control of the unitary propagator. Radio frequency pulses are used in coherent spectroscopy to implement a unitary transfer of state. Pulse sequences that accomplish a desired transfer should be as short as possible in order to minimize the effects of relaxation and to optimize the sensitivity of the experiments. Here, we give an analytical characterization of such time optimal pulse sequences applicable to coherence transfer experiments in multiple-spin systems. We have adopted a general mathematical formulation, and present many of our results in this setting, mindful of the fact that new structures in optimal pulse design are constantly arising. Moreover, the general proofs are no more difficult than the specific problems of current interest. From a general control theory perspective, the problems we want to study have the following character. Suppose we are given a controllable right invariant system on a compact Lie group, what is the minimum time required to steer the system from some initial point to a specified final point? In NMR spectroscopy and quantum computing, this translates to, what is the minimum time required to produce a unitary propagator? We also give an analytical characterization of maximum achievable transfer in a given time for the two spin system.Comment: 20 Pages, 3 figure
    • …
    corecore