1,429 research outputs found

    A combinatorial smoothness criterion for spherical varieties

    Full text link
    We suggest a combinatorial criterion for the smoothness of an arbitrary spherical variety using the classification of multiplicity-free spaces, generalizing an earlier result of Camus for spherical varieties of type AA.Comment: 14 pages, 2 table

    Nanofibre-based trap for Rb2_2 molecule

    Full text link
    We describe a theoretical proposal of a nanofibre-based trap for a Rb2_2 molecule prepared in the metastable state (1)3Σu+(1)^3\Sigma^+_u. The trapping potential results from the combination of a travelling and a standing-wave fields, both carried by the fundamental guided mode HE11_{11} of the fibre. We show that, with an experimentally realistic choice of laser frequencies and powers, one can implement a ≈200\approx 200 μ\muK-deep well at ≈140\approx 140 nm from the fibre surface accomodating for ≈500\approx 500 translational molecular states

    Stress deformations and structural quenching in Sm0.5Ca0.5MnO3 thin films allow a huge decrease of the charge order melting magnetic field

    Full text link
    Thin films of Sm0.5Ca0.5MnO3 manganites with charge ordering (CO) properties and colossal magnetoresistance were synthesized by pulsed laser deposition technique on (100)-SrTiO3 and (100)-LaAlO3 substrates. We first compare the structural modifications as function of the substrate and film thickness. Secondly, measuring transport properties in magnetic fields up to 24T, we establish the temperature-field phase diagram describing the stability of the CO state and compare it to bulk material. We show that some structural modification induced by the substrate occurs and that the CO melting magnetic field is greatly reduced. Moreover, with the temperature decrease, no modification of the lattice parameters is observed. We then propose an explanation based on the quenching of the unit cell of the film that adopts the in-plane lattice parameters of the substrate and thus, prevents the complete growth of the CO state at low temperature.Comment: to be published in Journal of Applied Physic

    Marked influence of the nature of chemical bond on CP-violating signature in molecular ions HBr+\mathrm{HBr}^{+} and HI+\mathrm{HI}^{+}

    Full text link
    Heavy polar molecules offer a great sensitivity to the electron Electric Dipole Moment(EDM). To guide emerging searches for EDMs with molecular ions, we estimate the EDM-induced energy corrections for hydrogen halide ions HBr+\mathrm{HBr}^{+} and HI+\mathrm{HI}^{+} in their respective ground X2Π3/2X ^2\Pi_{3/2} states. We find that the energy corrections due to EDM for the two ions differ by an unexpectedly large factor of fifteen. We demonstrate that a major part of this enhancement is due to a dissimilarity in the nature of the chemical bond for the two ions: the bond that is nearly of ionic character in HBr+\mathrm{HBr}^{+} exhibits predominantly covalent nature in HI+\mathrm{HI}^{+}. We conclude that because of this enhancement the HI+^+ ion may be a potentially competitive candidate for the EDM search.Comment: This manuscript has been accepted for publication in Physical Review Letters. The paper is now being prepared for publicatio

    Phonons in the multiferroic langasite Ba_3\_3NbFe_3\_3Si_2\_2O_14\_{14} : evidences for symmetry breaking

    Get PDF
    The chiral langasite Ba_3\_3NbFe_3\_3Si_2\_2O_14\_{14} is a multiferroic compound. While its magnetic order below T_N\_N=27 K is now well characterised, its polar order is still controversial. We thus looked at the phonon spectrum and its temperature dependence to unravel possible crystal symmetry breaking. We combined optical measurements (both infrared and Raman spectroscopy) with ab initio calculations and show that signatures of a polar state are clearly present in the phonon spectrum even at room temperature. An additional symmetry lowering occurs below 120~K as seen from emergence of softer phonon modes in the THz range. These results confirm the multiferroic nature of this langasite and open new routes to understand the origin of the polar state

    Large phenotype jumps in biomolecular evolution

    Full text link
    By defining the phenotype of a biopolymer by its active three-dimensional shape, and its genotype by its primary sequence, we propose a model that predicts and characterizes the statistical distribution of a population of biopolymers with a specific phenotype, that originated from a given genotypic sequence by a single mutational event. Depending on the ratio g0 that characterizes the spread of potential energies of the mutated population with respect to temperature, three different statistical regimes have been identified. We suggest that biopolymers found in nature are in a critical regime with g0 in the range 1-6, corresponding to a broad, but not too broad, phenotypic distribution resembling a truncated Levy flight. Thus the biopolymer phenotype can be considerably modified in just a few mutations. The proposed model is in good agreement with the experimental distribution of activities determined for a population of single mutants of a group I ribozyme.Comment: to appear in Phys. Rev. E; 7 pages, 6 figures; longer discussion in VII, new fig.

    Relations between Rydberg-valence interactions in the Oâ‚‚ molecule

    No full text
    Using a single-configuration formulation, analytical expressions are derived for the (X²Πg) nsσg, npπu, and npσu Rydberg-valence interaction matrix elements in O₂. In addition, new results from diabatic, coupled-channel deperturbations of experimental data dependent on these interactions are reported for n=3 and 4. Using these results, the large differences in magnitude between the Rydberg-valence couplings for the constituent states of the npπuRydberg complex that are predicted by the analytical expressions are verified experimentally. Effective values for several two-electron integrals are obtained semiempirically through comparison between analytical expressions and deperturbed experimental values for the Rydberg-state energies and Rydberg-valence couplings, allowing predictions to be made for the spectroscopy of the npπu ¹Σ−uRydberg states which have yet to be observed

    High-resolution Fourier-transform XUV photoabsorption spectroscopy of 14N15N

    Get PDF
    The first comprehensive high-resolution photoabsorption spectrum of 14N15N has been recorded using the Fourier-transform spectrometer attached to the Desirs beamline at the Soleil synchrotron. Observations are made in the extreme ultraviolet (XUV) and span 100,000-109,000 cm-1 (100-91.7 nm). The observed absorption lines have been assigned to 25 bands and reduced to a set of transition energies, f values, and linewidths. This analysis has verified the predictions of a theoretical model of N2 that simulates its photoabsorption and photodissociation cross section by solution of an isotopomer independent formulation of the coupled-channel Schroedinger equation. The mass dependence of predissociation linewidths and oscillator strengths is clearly evident and many local perturbations of transition energies, strengths, and widths within individual rotational series have been observed.Comment: 14 pages, 8 figures, one data archiv

    Formation of collective spins in frustrated clusters

    Get PDF
    Using magnetization, specific heat and neutron scattering measurements, as well as exact calculations on realistic models, the magnetic properties of the \lacuvo compound are characterized on a wide temperature range. At high temperature, this oxide is well described by strongly correlated atomic SS=1/2 spins while decreasing the temperature it switches to a set of weakly interacting and randomly distributed entangled pseudo spins S~=1/2\tilde S=1/2 and S~=0\tilde S=0. These pseudo-spins are built over frustrated clusters, similar to the kagom\'e building block, at the vertices of a triangular superlattice, the geometrical frustration intervening then at different scales.Comment: 10 page
    • …
    corecore