12,932 research outputs found
A head-up display format for transport aircraft approach and landing
An electronic flight-guidance display format was designed for use in evaluations of the collimated head-up display concept applied to transport aircraft landing. In the design process of iterative evaluation and modification, some general principles, or guidelines, applicable to electronic flight displays were suggested. The usefulness of an indication of instantaneous inertial flightpath was clearly demonstrated. Evaluator pilot acceptance of the unfamiliar display concepts was very positive when careful attention was given to indoctrination and training
Spin-resolved electron-impact ionization of lithium
Electron-impact ionization of lithium is studied using the convergent
close-coupling (CCC) method at 25.4 and 54.4 eV. Particular attention is paid
to the spin-dependence of the ionization cross sections. Convergence is found
to be more rapid for the spin asymmetries, which are in good agreement with
experiment, than for the underlying cross sections. Comparison with the recent
measured and DS3C-calculated data of Streun et al (1999) is most intriguing.
Excellent agreement is found with the measured and calculated spin asymmetries,
yet the discrepancy between the CCC and DS3C cross sections is very large
Flame spread in laminar mixing layers: the triple flame
In the present paper we investígate flame spread in laminar mixing layers both experimentally and numerically. First, a burner has been designed and built such that stationary triple ñames can be stabilised in a coflowing stream with well defined linear concentration gradients and well defined uniform flow velocity at the inlet to the combustión chamber. The burner itself as well as first experimental results obtained with it are presented. Second, a theoretical model is formulated for analysis of triple flames in a strained mixing laycr generated by directing a fuel stream and an oxidizer stream towards each other. Here attention is focused on the stagnation región where by means of a similarity formulation the three-dimensional flow can be described by only two spatial coordinates. To solve the governing equations for the limiting case in which a thermal-diffusional model results, a numerical solution procedure based on self-adaptive mesh refinement is developed. For the thermal-diffusional model, the structure of the triple flame and its propagation velocity are obtained by solving numerically the governing similarity equations for a wide range of strain rates
Evidence of non-mean-field-like low-temperature behavior in the Edwards-Anderson spin-glass model
The three-dimensional Edwards-Anderson and mean-field Sherrington-Kirkpatrick
Ising spin glasses are studied via large-scale Monte Carlo simulations at low
temperatures, deep within the spin-glass phase. Performing a careful
statistical analysis of several thousand independent disorder realizations and
using an observable that detects peaks in the overlap distribution, we show
that the Sherrington-Kirkpatrick and Edwards-Anderson models have a distinctly
different low-temperature behavior. The structure of the spin-glass overlap
distribution for the Edwards-Anderson model suggests that its low-temperature
phase has only a single pair of pure states.Comment: 4 pages, 6 figures, 2 table
Velocity Distribution of Topological Defects in Phase-Ordering Systems
The distribution of interface (domain-wall) velocities in a
phase-ordering system is considered. Heuristic scaling arguments based on the
disappearance of small domains lead to a power-law tail,
for large v, in the distribution of . The exponent p is
given by , where d is the space dimension and 1/z is the growth
exponent, i.e. z=2 for nonconserved (model A) dynamics and z=3 for the
conserved case (model B). The nonconserved result is exemplified by an
approximate calculation of the full distribution using a gaussian closure
scheme. The heuristic arguments are readily generalized to conserved case
(model B). The nonconserved result is exemplified by an approximate calculation
of the full distribution using a gaussian closure scheme. The heuristic
arguments are readily generalized to systems described by a vector order
parameter.Comment: 5 pages, Revtex, no figures, minor revisions and updates, to appear
in Physical Review E (May 1, 1997
An evaluation of head-up displays in civil transport operations
To determine the advantages and disadvantages of head-up displays (HUD) in civil transport approach and landing operations, an operational evaluation was conducted on the flight simulator for advanced aircraft at Ames. A non-conformal HUD concept which contained raw data and Flight Director command information, and a conformal, flight path HUD concept was designed to permit terminal area maneuvering, intercept, final approach, flare, and landing operations. Twelve B-727 line pilots (Captains) flew a series of precision and non-precision approaches under a variety of environmental and operational conditions, including wind shear, turbulence and low ceilings and visibilities. A preliminary comparison of various system and pilot performance measures as a function of display type (Flight Director HUD, Flight Path HUD, or No HUD) indicates improvements in precision and accuracy of aircraft flight path control when using the HUDs. The results also demonstrated some potentially unique advantages of a flight path HUD during non-precision approaches
Zero Temperature Dynamics of the Weakly Disordered Ising Model
The Glauber dynamics of the pure and weakly disordered random-bond 2d Ising
model is studied at zero-temperature. A single characteristic length scale,
, is extracted from the equal time correlation function. In the pure
case, the persistence probability decreases algebraically with the coarsening
length scale. In the disordered case, three distinct regimes are identified: a
short time regime where the behaviour is pure-like; an intermediate regime
where the persistence probability decays non-algebraically with time; and a
long time regime where the domains freeze and there is a cessation of growth.
In the intermediate regime, we find that , where
. The value of is consistent with that
found for the pure 2d Ising model at zero-temperature. Our results in the
intermediate regime are consistent with a logarithmic decay of the persistence
probability with time, , where .Comment: references updated, very minor amendment to abstract and the
labelling of figures. To be published in Phys Rev E (Rapid Communications), 1
March 199
Transport of Single Molecules Along the Periodic Parallel Lattices with Coupling
General discrete one-dimensional stochastic models to describe the transport
of single molecules along coupled parallel lattices with period are
developed. Theoretical analysis that allows to calculate explicitly the
steady-state dynamic properties of single molecules, such as mean velocity
and dispersion , is presented for N=1 and N=2 models. For the systems with
exact analytic expressions for the large-time dynamic properties are
obtained in the limit of strong coupling between the lattices that leads to
dynamic equilibrium between two parallel kinetic pathways.Comment: Submitted to J. Chem. Phy
Persistence in systems with algebraic interaction
Persistence in coarsening 1D spin systems with a power law interaction
is considered. Numerical studies indicate that for sufficiently
large values of the interaction exponent ( in our
simulations), persistence decays as an algebraic function of the length scale
, . The Persistence exponent is found to be
independent on the force exponent and close to its value for the
extremal () model, . For smaller
values of the force exponent (), finite size effects prevent the
system from reaching the asymptotic regime. Scaling arguments suggest that in
order to avoid significant boundary effects for small , the system size
should grow as .Comment: 4 pages 4 figure
Critical properties of the unconventional spin-Peierls system TiOBr
We have performed detailed x-ray scattering measurements on single crystals
of the spin-Peierls compound TiOBr in order to study the critical properties of
the transition between the incommensurate spin-Peierls state and the
paramagnetic state at Tc2 ~ 48 K. We have determined a value of the critical
exponent beta which is consistent with the conventional 3D universality
classes, in contrast with earlier results reported for TiOBr and TiOCl. Using a
simple power law fit function we demonstrate that the asymptotic critical
regime in TiOBr is quite narrow, and obtain a value of beta_{asy} = 0.32 +/-
0.03 in the asymptotic limit. A power law fit function which includes the first
order correction-to-scaling confluent singularity term can be used to account
for data outside the asymptotic regime, yielding a more robust value of
beta_{avg} = 0.39 +/- 0.05. We observe no evidence of commensurate fluctuations
above Tc1 in TiOBr, unlike its isostructural sister compound TiOCl. In
addition, we find that the incommensurate structure between Tc1 and Tc2 is
shifted in Q-space relative to the commensurate structure below Tc1.Comment: 12 pages, 8 figures. Submitted to Physical Review
- …
