26 research outputs found

    Brain microtubule-associated proteins modulate microtubule dynamic instability in vitro : real-time-observations using video microscopy

    Get PDF
    We used video assays to study the dynamic instability behavior of individual microtubules assembled in vitro with purified tau, purified MAP2 or a preparation of unfractionated heat-stable MAPs. Axoneme-nucleated microtubules were assembled from pure tubulin at concentrations between 4 and 9 microM in the presence of MAPs, and observed by video-differential interference contrast microscopy. Microtubules co-assembled with each MAP preparation exhibited the elongation and rapid shortening phases and the abrupt transitions (catastrophe and rescue) characteristic of dynamic instability. Each MAP preparation increased the microtubule elongation rate above that for purified tubulin alone by decreasing the tubulin subunit dissociation rate during elongation. The brain MAPs used in this study reduced the rate of microtubule rapid shortening, but allowed significant loss of polymer during the shortening phase. Purified tau and MAP2 decreased the frequency of catastrophe and increased the frequency of rescue, while the heat-stable MAPs suppressed catastrophe at all but the lowest tubulin concentrations. Thus, each of these MAPs modulates, but does not abolish, dynamic instability behavior of microtubules. We propose a model to explain how MAP2 and tau bind to the microtubule lattice at sites along protofilaments so that the MAPs promote polymerization, but do not significantly block the mechanism of rapid shortening inherent in the tubulin lattice. Rapid shortening, when it occurs, proceeds primarily by the dissociation of short fragments of protofilaments, which contain the bound MAPs

    Two Pathways Recruit Telomerase to Saccharomyces cerevisiae Telomeres

    Get PDF
    The catalytic subunit of yeast telomerase, Est2p, is a telomere associated throughout most of the cell cycle, while the Est1p subunit binds only in late S/G2 phase, the time of telomerase action. Est2p binding in G1/early S phase requires a specific interaction between telomerase RNA (TLC1) and Ku80p. Here, we show that in four telomerase-deficient strains (cdc13-2, est1Ä, tlc1-SD, and tlc1-BD), Est2p telomere binding was normal in G1/early S phase but reduced to about 40–50% of wild type levels in late S/G2 phase. Est1p telomere association was low in all four strains. Wild type levels of Est2p telomere binding in late S/G2 phase was Est1p-dependent and required that Est1p be both telomere-bound and associated with a stem-bulge region in TLC1 RNA. In three telomerase-deficient strains in which Est1p is not Est2p-associated (tlc1-SD, tlc1-BD, and est2Ä), Est1p was present at normal levels but its telomere binding was very low. When the G1/early S phase and the late S/G2 phase telomerase recruitment pathways were both disrupted, neither Est2p nor Est1p was telomere-associated. We conclude that reduced levels of Est2p and low Est1p telomere binding in late S/G2 phase correlated with an est phenotype, while a WT level of Est2p binding in G1 was not sufficient to maintain telomeres. In addition, even though Cdc13p and Est1p interact by two hybrid, biochemical and genetic criteria, this interaction did not occur unless Est1p was Est2p-associated, suggesting that Est1p comes to the telomere only as part of the holoenzyme. Finally, the G1 and late S/G2 phase pathways for telomerase recruitment are distinct and are likely the only ones that bring telomerase to telomeres in wild-type cells

    Genes Required for Growth at High Hydrostatic Pressure in Escherichia coli K-12 Identified by Genome-Wide Screening

    Get PDF
    Despite the fact that much of the global microbial biosphere is believed to exist in high pressure environments, the effects of hydrostatic pressure on microbial physiology remain poorly understood. We use a genome-wide screening approach, combined with a novel high-throughput high-pressure cell culture method, to investigate the effects of hydrostatic pressure on microbial physiology in vivo. The Keio collection of single-gene deletion mutants in Escherichia coli K-12 was screened for growth at a range of pressures from 0.1 MPa to 60 MPa. This led to the identification of 6 genes, rodZ, holC, priA, dnaT, dedD and tatC, whose products were required for growth at 30 MPa and a further 3 genes, tolB, rffT and iscS, whose products were required for growth at 40 MPa. Our results support the view that the effects of pressure on cell physiology are pleiotropic, with DNA replication, cell division, the cytoskeleton and cell envelope physiology all being potential failure points for cell physiology during growth at elevated pressure

    Research prioritisation exercises related to the care of children and young people with life-limiting conditions, their parents, and all those who care for them : a systematic scoping review

    Get PDF
    Background: In planning high quality research in any aspect of care for children and young people with life-limiting conditions it is important to prioritise resources in the most appropriate areas. Aim: To map research priorities identified from existing research prioritisation exercises relevant to infants, children, and young people with life-limiting conditions, in order to inform future research. Design: We undertook a systematic scoping review to identify existing research prioritisation exercises; the protocol is publicly available on the project website. Data sources: The bibliographic databases ASSIA, CINAHL, MEDLINE/MEDLINE In Process and Embase were searched from 2000. Relevant reference lists and websites were hand searched. Included were any consultations aimed at identifying research for the benefit of neonates, infants, children and/or young people (birth to age 25 years) with life-limiting, -threatening or -shortening conditions; their family, parents, carers; and/or the professional staff caring for them. Results: Twenty four research prioritisation exercises met the inclusion criteria, from which 279 research questions or priority areas for health research were identified. The priorities were iteratively mapped onto an evolving framework, informed by WHO classifications. This resulted in identification of 16 topic areas, 55 sub-topics and 12 sub-sub-topics. Conclusions: There are numerous similar and overlapping research prioritisation exercises related to children and young people with life-limiting conditions. By mapping existing research priorities in the context in which they were set, we highlight areas to focus research efforts on. Further priority setting is not required at this time unless devoted to ascertaining families’ perspectives
    corecore