96 research outputs found

    Thomas Decomposition of Algebraic and Differential Systems

    Full text link
    In this paper we consider disjoint decomposition of algebraic and non-linear partial differential systems of equations and inequations into so-called simple subsystems. We exploit Thomas decomposition ideas and develop them into a new algorithm. For algebraic systems simplicity means triangularity, squarefreeness and non-vanishing initials. For differential systems the algorithm provides not only algebraic simplicity but also involutivity. The algorithm has been implemented in Maple

    Modeling active electrolocation in weakly electric fish

    Full text link
    In this paper, we provide a mathematical model for the electrolocation in weakly electric fishes. We first investigate the forward complex conductivity problem and derive the approximate boundary conditions on the skin of the fish. Then we provide a dipole approximation for small targets away from the fish. Based on this approximation, we obtain a non-iterative location search algorithm using multi-frequency measurements. We present numerical experiments to illustrate the performance and the stability of the proposed multi-frequency location search algorithm. Finally, in the case of disk- and ellipse-shaped targets, we provide a method to reconstruct separately the conductivity, the permittivity, and the size of the targets from multi-frequency measurements.Comment: 37 pages, 11 figure

    Parameter optimization by using differential elimination: a general approach for introducing constraints into objective functions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The investigation of network dynamics is a major issue in systems and synthetic biology. One of the essential steps in a dynamics investigation is the parameter estimation in the model that expresses biological phenomena. Indeed, various techniques for parameter optimization have been devised and implemented in both free and commercial software. While the computational time for parameter estimation has been greatly reduced, due to improvements in calculation algorithms and the advent of high performance computers, the accuracy of parameter estimation has not been addressed. </p> <p>Results</p> <p>We propose a new approach for parameter optimization by using differential elimination, to estimate kinetic parameter values with a high degree of accuracy. First, we utilize differential elimination, which is an algebraic approach for rewriting a system of differential equations into another equivalent system, to derive the constraints between kinetic parameters from differential equations. Second, we estimate the kinetic parameters introducing these constraints into an objective function, in addition to the error function of the square difference between the measured and estimated data, in the standard parameter optimization method. To evaluate the ability of our method, we performed a simulation study by using the objective function with and without the newly developed constraints: the parameters in two models of linear and non-linear equations, under the assumption that only one molecule in each model can be measured, were estimated by using a genetic algorithm (GA) and particle swarm optimization (PSO). As a result, the introduction of new constraints was dramatically effective: the GA and PSO with new constraints could successfully estimate the kinetic parameters in the simulated models, with a high degree of accuracy, while the conventional GA and PSO methods without them frequently failed.</p> <p>Conclusions</p> <p>The introduction of new constraints in an objective function by using differential elimination resulted in the drastic improvement of the estimation accuracy in parameter optimization methods. The performance of our approach was illustrated by simulations of the parameter optimization for two models of linear and non-linear equations, which included unmeasured molecules, by two types of optimization techniques. As a result, our method is a promising development in parameter optimization. </p

    On the Regularity Property of Differential Polynomials Modulo Regular Differential Chains

    Get PDF
    International audienceThis paper provides an algorithm which computes the normal form of a rational differential fraction modulo a regular differential chain if, and only if, this normal form exists. A regularity test for polynomials modulo regular chains is revisited in the nondifferential setting and lifted to differential algebra. A new characterization of regular chains is provided

    Extrapolation of power series by self-similar factor and root approximants

    Full text link
    The problem of extrapolating the series in powers of small variables to the region of large variables is addressed. Such a problem is typical of quantum theory and statistical physics. A method of extrapolation is developed based on self-similar factor and root approximants, suggested earlier by the authors. It is shown that these approximants and their combinations can effectively extrapolate power series to the region of large variables, even up to infinity. Several examples from quantum and statistical mechanics are analysed, illustrating the approach.Comment: 21 pages, Latex fil

    A Linear Algebra Approach for Detecting Binomiality of Steady State Ideals of Reversible Chemical Reaction Networks

    Full text link
    Motivated by problems from Chemical Reaction Network Theory, we investigate whether steady state ideals of reversible reaction networks are generated by binomials. We take an algebraic approach considering, besides concentrations of species, also rate constants as indeterminates. This leads us to the concept of unconditional binomiality, meaning binomiality for all values of the rate constants. This concept is different from conditional binomiality that applies when rate constant values or relations among rate constants are given. We start by representing the generators of a steady state ideal as sums of binomials, which yields a corresponding coefficient matrix. On these grounds we propose an efficient algorithm for detecting unconditional binomiality. That algorithm uses exclusively elementary column and row operations on the coefficient matrix. We prove asymptotic worst case upper bounds on the time complexity of our algorithm. Furthermore, we experimentally compare its performance with other existing methods

    Thomas Decomposition and Nonlinear Control Systems

    Get PDF
    This paper applies the Thomas decomposition technique to nonlinear control systems, in particular to the study of the dependence of the system behavior on parameters. Thomas' algorithm is a symbolic method which splits a given system of nonlinear partial differential equations into a finite family of so-called simple systems which are formally integrable and define a partition of the solution set of the original differential system. Different simple systems of a Thomas decomposition describe different structural behavior of the control system in general. The paper gives an introduction to the Thomas decomposition method and shows how notions such as invertibility, observability and flat outputs can be studied. A Maple implementation of Thomas' algorithm is used to illustrate the techniques on explicit examples
    corecore