15 research outputs found

    Combined effect of CCND1 and COMT polymorphisms and increased breast cancer risk

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Estrogens are crucial tumorigenic hormones, which impact the cell growth and proliferation during breast cancer development. Estrogens are metabolized by a series of enzymes including COMT, which converts catechol estrogens into biologically non-hazardous methoxyestrogens. Several studies have also shown the relationship between estrogen and cell cycle progression through activation of CCND1 transcription.</p> <p>Methods</p> <p>In this study, we have investigated the independent and the combined effects of commonly occurring CCND1 (Pro241Pro, A870G) and COMT (Met108/158Val) polymorphisms to breast cancer risk in two independent Caucasian populations from Ontario (1228 breast cancer cases and 719 population controls) and Finland (728 breast cancer cases and 687 population controls). Both COMT and CCND1 polymorphisms have been previously shown to impact on the enzymatic activity of the coded proteins.</p> <p>Results</p> <p>Here, we have shown that the high enzymatic activity genotype of CCND1<sup>High </sup>(AA) was associated with increased breast cancer risk in both the Ontario [OR: 1.3, 95%CI (1.0–1.69)] and the Finland sample [OR: 1.4, 95%CI (1.01–1.84)]. The heterozygous COMT<sup>Medium </sup>(MetVal) and the high enzymatic activity of COMT<sup>High </sup>(ValVal) genotype was also associated with breast cancer risk in Ontario cases, [OR: 1.3, 95%CI (1.07–1.68)] and [OR: 1.4, 95%CI (1.07–1.81)], respectively. However, there was neither a statistically significant association nor increased trend of breast cancer risk with COMT<sup>High </sup>(ValVal) genotypes in the Finland cases [OR: 1.0, 95%CI (0.73–1.39)]. In the combined analysis, the higher activity alleles of the COMT and CCND1 is associated with increased breast cancer risk in both Ontario [OR: <b>2.22</b>, 95%CI (1.49–3.28)] and Finland [OR: <b>1.73</b>, 95%CI (1.08–2.78)] populations studied. The trend test was statistically significant in both the Ontario and Finland populations across the genotypes associated with increasing enzymatic activity.</p> <p>Conclusion</p> <p>Using two independent Caucasian populations, we have shown a stronger combined effect of the two commonly occurring CCND1 and COMT genotypes in the context of breast cancer predisposition.</p

    Association of the COMT val158met variant with antidepressant treatment response in major depression

    Get PDF
    In several previous biochemical, pharmacological, and genetic studies, the catechol-O-methyltransferase (COMT) has been suggested to be involved in the pathogenesis as well as the pharmacological treatment of affective disorders. In the present study, 256 patients with major depression (DSM-IV) of Caucasian descent were genotyped for the functional COMT val158met polymorphism and characterized for clinical response to antidepressive pharmacological treatment as measured by intra-individual changes of Hamilton Depression (HAM-D-21) scores over 6 weeks. The COMT 158val/val genotype conferred a significant risk of worse response after 4–6 weeks of antidepressant treatment in patients with major depression (week 4: p=0.003; week 5: p<0.0001; week 6: p<0.0001) after Bonferroni correction for multiple comparisons. The present results strongly point toward a negative influence of the higher activity COMT 158val/val genotype on antidepressant treatment response during the first 6 weeks of pharmacological treatment in major depression, possibly conferred by consecutively decreased dopamine availability. This finding suggests a potentially beneficial effect of an antidepressive add-on therapy with substances increasing dopamine availability individually tailored according to COMT val158met genotype

    Dexamphetamine effects on prepulse inhibition (PPI) and startle in healthy volunteers

    No full text
    Rationale: Amphetamine challenge in rodent prepulse inhibition (PPI) studies has been used to model potential dopamine involvement in effects that may be relevant to schizophrenia, though similar studies in healthy humans have failed to report replicable or robust effects. Objectives: The present study investigated dexamphetamine effects on PPI in healthy humans with an increased dose and a range of startling stimulus intensities to determine participants' sensitivity and range of responses to the stimuli. Methods: A randomised, placebo-controlled dexamphetamine (0.45 mg/kg, per os.), double-blind, counterbalanced, within-subject design was used. PPI was measured in 64 participants across a range of startling stimulus intensities, during two attention set conditions (ATTEND and IGNORE). Startle magnitudes for pulse-alone and prepulse-pulse magnitudes were modelled using the startle reflex magnitude (sigmoid) function. Parameters were extracted from these fits, including the upper limit of the asymptote (maximum startle reflex capacity, R MAX), intensity threshold, stimulus intensity that elicits a half-maximal response (ES50) and the maximum rate of change of startle response magnitude to an increase in stimulus intensity. Results: Dexamphetamine increased the threshold and ES50 of the response to pulse-alone trials in both sexes and reduced R MAX exclusively in females. Dexamphetamine modestly increased PPI of the R MAX across both attention conditions. PPI of R MAX was reduced during the ATTEND condition compared to the IGNORE condition. Conclusions: Results indicate that sex differences exist in motor, but not sensory, components of the startle reflex. Findings also reveal that administration of 0.45 mg/kg dexamphetamine to healthy humans does not mimic PPI effects observed in schizophrenia

    Comprehensive interrogation of CpG island methylation in the gene encoding COMT, a key estrogen and catecholamine regulator

    No full text
    BACKGROUND: The catechol-O-methyltransferase (COMT) enzyme has been widely studied due to its multiple roles in neurological functioning, estrogen biology, and methylation metabolic pathways. Numerous studies have investigated variation in the large COMT gene, with the majority focusing on single nucleotide polymorphisms (SNPs). This body of work has linked COMT genetic variation with a vast array of conditions, including several neurobehavioral disorders, pain sensitivity, and multiple human cancers. Based on COMT’s numerous biological roles and recent studies suggesting that methylation of the COMT gene impacts COMT gene expression, we comprehensively interrogated methylation in over 200 CpG dinucleotide sequences spanning the length of the COMT gene. METHODS: Using saliva-derived DNA from a non-clinical sample of human subjects, we tested for associations between COMT CpG methylation and factors reported to interact with COMT genetic effects, including demographic factors and alcohol use. Finally, we tested associations between COMT CpG methylation state and COMT gene expression in breast cancer cell lines. We interrogated >200 CpGs in 13 amplicons spanning the 5’ UTR to the last exon of the CpG dinucleotide-rich COMT gene in n = 48 subjects, n = 11 cell lines and 1 endogenous 18S rRNA control. RESULTS: With the exception of the CpG island in the 5’UTR and 1(st) exon, all other CpG islands were strongly methylated with typical dynamic ranges between 50-90%. In the saliva samples, methylation of multiple COMT loci was associated with socioeconomic status or ethnicity. We found associations between methylation at numerous loci and genotype at the functional Val( 158 )Met SNP (rs4680), and most of the correlations between methylation and demographic and alcohol use factors were Val( 158 )Met allele-specific. Methylation at several of these loci also associated with COMT gene expression in breast cancer cell lines. CONCLUSIONS: We report the first comprehensive interrogation of COMT methylation. We corroborate previous findings of variation in COMT methylation with gene expression and the Val( 158 )Met genotype, and also report novel associations with socioeconomic status (SES) and ethnicity at several methylated loci. These results point to novel mechanisms for COMT regulation, which may have broad therapeutic implications
    corecore