7,981 research outputs found

    Quantum model of interacting ``strings'' on the square lattice

    Full text link
    The model which is the generalization of the one-dimensional XY-spin chain for the case of the two-dimensional square lattice is considered. The subspace of the ``string'' states is studied. The solution to the eigenvalue problem is obtained for the single ``string'' in cases of the ``string'' with fixed ends and ``string'' of types (1,1) and (1,2) living on the torus. The latter case has the features of a self-interacting system and looks not to be integrable while the previous two cases are equivalent to the free-fermion model.Comment: LaTeX, 33 pages, 16 figure

    Anomalous Wtb Coupling in ep Collision

    Get PDF
    The potential of ep collision to prospect for anomalous Wtb vertex is discussed from the single top quark production process eptνˉ+Xep\to t\bar{\nu}+X for TESLA+HERAp and CLIC+LHC energies. Sensitivities to anomalous couplings F2LF_{2L} and F2RF_{2R}, in the case of CLIC+LHC, are shown to be comparable with LHC.Comment: 10 pages, 4 figure

    Is there the radion in the RS2 model ?

    Get PDF
    We analyse the physical boundary conditions at infinity for metric fluctuations and gauge functions in the RS2 model with matter on the brane. We argue that due to these boundary conditions the radion field cannot be gauged out in this case. Thus, it represents a physical degree of freedom of the model.Comment: 9 page

    A geometrical angle on Feynman integrals

    Get PDF
    A direct link between a one-loop N-point Feynman diagram and a geometrical representation based on the N-dimensional simplex is established by relating the Feynman parametric representations to the integrals over contents of (N-1)-dimensional simplices in non-Euclidean geometry of constant curvature. In particular, the four-point function in four dimensions is proportional to the volume of a three-dimensional spherical (or hyperbolic) tetrahedron which can be calculated by splitting into birectangular ones. It is also shown that the known formula of reduction of the N-point function in (N-1) dimensions corresponds to splitting the related N-dimensional simplex into N rectangular ones.Comment: 47 pages, including 42 pages of the text (in plain Latex) and 5 pages with the figures (in a separate Latex file, requires axodraw.sty) a note and three references added, minor problem with notation fixe

    Effective Lagrangians for physical degrees of freedom in the Randall-Sundrum model

    Full text link
    We derive the second variation Lagrangian of the Randall-Sundrum model with two branes, study its gauge invariance and diagonalize it in the unitary gauge. We also show that the effective four-dimensional theory looks different on different branes and calculate the observable mass spectra and the couplings of the physical degrees of freedom of 5-dimensional gravity to matter.Comment: 22 pages, LaTeX, typos correcte

    Traces on the Sklyanin algebra and correlation functions of the eight-vertex model

    Full text link
    We propose a conjectural formula for correlation functions of the Z-invariant (inhomogeneous) eight-vertex model. We refer to this conjecture as Ansatz. It states that correlation functions are linear combinations of products of three transcendental functions, with theta functions and derivatives as coefficients. The transcendental functions are essentially logarithmic derivatives of the partition function per site. The coefficients are given in terms of a linear functional on the Sklyanin algebra, which interpolates the usual trace on finite dimensional representations. We establish the existence of the functional and discuss the connection to the geometry of the classical limit. We also conjecture that the Ansatz satisfies the reduced qKZ equation. As a non-trivial example of the Ansatz, we present a new formula for the next-nearest neighbor correlation functions.Comment: 35 pages, 2 figures, final versio

    Holonomy of the Ising model form factors

    Full text link
    We study the Ising model two-point diagonal correlation function C(N,N) C(N,N) by presenting an exponential and form factor expansion in an integral representation which differs from the known expansion of Wu, McCoy, Tracy and Barouch. We extend this expansion, weighting, by powers of a variable λ\lambda, the jj-particle contributions, fN,N(j) f^{(j)}_{N,N}. The corresponding λ \lambda extension of the two-point diagonal correlation function, C(N,N;λ) C(N,N; \lambda), is shown, for arbitrary λ\lambda, to be a solution of the sigma form of the Painlev{\'e} VI equation introduced by Jimbo and Miwa. Linear differential equations for the form factors fN,N(j) f^{(j)}_{N,N} are obtained and shown to have both a ``Russian doll'' nesting, and a decomposition of the differential operators as a direct sum of operators equivalent to symmetric powers of the differential operator of the elliptic integral E E. Each fN,N(j) f^{(j)}_{N,N} is expressed polynomially in terms of the elliptic integrals E E and K K. The scaling limit of these differential operators breaks the direct sum structure but not the ``Russian doll'' structure. The previous λ \lambda-extensions, C(N,N;λ) C(N,N; \lambda) are, for singled-out values λ=cos(πm/n) \lambda= \cos(\pi m/n) (m,nm, n integers), also solutions of linear differential equations. These solutions of Painlev\'e VI are actually algebraic functions, being associated with modular curves.Comment: 39 page

    Resonant CP Violation in Higgs Radiation at e^+e^- Linear Collider

    Full text link
    We study resonant CP violation in the Higgsstrahlung process e^+e^- -> H_{1,2,3} (Z -> e^+e^-, \mu^+\mu^-) and subsequent decays H_{1,2,3} -> b \bar{b}, \tau^-\tau^+, in the MSSM with Higgs-sector CP violation induced by radiative corrections. At a high-energy e^+e^- linear collider, the recoil-mass method enables one to determine the invariant mass of a fermion pair produced by Higgs decays with a precision as good as 1 GeV. Assuming an integrated luminosity of 100/fb, we show that the production lineshape of a coupled system of neutral Higgs bosons decaying into b\bar{b} quarks is sensitive to the CP-violating parameters. When the Higgs bosons decay into \tau^-\tau^+, two CP asymmetries can be defined using the longitudinal and transverse polarizations of the tau leptons. Taking into account the constraints from electric dipole moments, we find that these CP asymmetries can be as large as 80 %, in a tri-mixing scenario where all three neutral Higgs states of the MSSM are nearly degenerate and mix significantly.Comment: 22 pages, 8 figures, to appear in Phys. Rev.

    Three Numerical Puzzles and the Top Quark's Chiral Weak-Moment

    Get PDF
    Versus the standard model's t --> W b decay helicity amplitudes, three numerical puzzles occur at the 0.1 % level when one considers the amplitudes in the case of an additional (f_M + f_E) coupling of relative strength 53 GeV. The puzzles are theoretical ones which involve the t --> W b decay helicity amplitudes in the two cases, the relative strength of this additional coupling, and the observed masses of these three particles. A deeper analytic realization is obtained for two of them. Equivalent realizations are given for the remaining one. An empirical consequence of these analytic realizations is that it is important to search for effects of a large chiral weak-moment of the top-quark, the effective mass-scale is about 53 GeV. A full theoretical resolution would include relating the origin of such a chiral weak-moment and the mass generation of the top-quark, the W-boson, and probably the b-quark.Comment: 18 pages, 1 postscript table (revised to better explain notation, model #1, add a little material...
    corecore