915 research outputs found

    The Stability of One-Step Schemes for First-Order Two-Point Boundary Value Problems

    Get PDF
    The stability of a finite difference scheme is related explicitly to the stability of the continuous problem being solved. At times, this gives materially better estimates for the stability constant than those obtained by the standard process of appealing to the stability of the numerical scheme for the associated initial value problem

    A numerical study of two-photon ionization of helium using the Pyprop framework

    Full text link
    Few-photon induced breakup of helium is studied using a newly developed ab initio numerical framework for solving the six-dimensional time-dependent Schroedinger equation. We present details of the method and calculate (generalized) cross sections for the process of two-photon nonsequential (direct) double ionization at photon energies ranging from 39.4 to 54.4 eV, a process that has been very much debated in recent years and is not yet fully understood. In particular, we have studied the convergence property of the total cross section in the vicinity of the upper threshold (54.4 eV), versus the pulse duration of the applied laser field. We find that the cross section exhibits an increasing trend near the threshold, as has also been observed by others, and show that this rise cannot solely be attributed to an unintended inclusion of the sequential two-photon double ionization process, caused by the bandwidth of the applied field.Comment: 7 pages, 3 figure

    Functions preserving nonnegativity of matrices

    Full text link
    The main goal of this work is to determine which entire functions preserve nonnegativity of matrices of a fixed order nn -- i.e., to characterize entire functions ff with the property that f(A)f(A) is entrywise nonnegative for every entrywise nonnegative matrix AA of size n×nn\times n. Towards this goal, we present a complete characterization of functions preserving nonnegativity of (block) upper-triangular matrices and those preserving nonnegativity of circulant matrices. We also derive necessary conditions and sufficient conditions for entire functions that preserve nonnegativity of symmetric matrices. We also show that some of these latter conditions characterize the even or odd functions that preserve nonnegativity of symmetric matrices.Comment: 20 pages; expanded and corrected to reflect referees' remarks; to appear in SIAM J. Matrix Anal. App

    Adiabatic hyperspherical study of triatomic helium systems

    Full text link
    The 4He3 system is studied using the adiabatic hyperspherical representation. We adopt the current state-of-the-art helium interaction potential including retardation and the nonadditive three-body term, to calculate all low-energy properties of the triatomic 4He system. The bound state energies of the 4He trimer are computed as well as the 4He+4He2 elastic scattering cross sections, the three-body recombination and collision induced dissociation rates at finite temperatures. We also treat the system that consists of two 4He and one 3He atoms, and compute the spectrum of the isotopic trimer 4He2 3He, the 3He+4He2 elastic scattering cross sections, the rates for three-body recombination and the collision induced dissociation rate at finite temperatures. The effects of retardation and the nonadditive three-body term are investigated. Retardation is found to be significant in some cases, while the three-body term plays only a minor role for these systems.Comment: 24 pages 6 figures Submitted to Physical Review

    Single Image Super-Resolution Using Multi-Scale Convolutional Neural Network

    Full text link
    Methods based on convolutional neural network (CNN) have demonstrated tremendous improvements on single image super-resolution. However, the previous methods mainly restore images from one single area in the low resolution (LR) input, which limits the flexibility of models to infer various scales of details for high resolution (HR) output. Moreover, most of them train a specific model for each up-scale factor. In this paper, we propose a multi-scale super resolution (MSSR) network. Our network consists of multi-scale paths to make the HR inference, which can learn to synthesize features from different scales. This property helps reconstruct various kinds of regions in HR images. In addition, only one single model is needed for multiple up-scale factors, which is more efficient without loss of restoration quality. Experiments on four public datasets demonstrate that the proposed method achieved state-of-the-art performance with fast speed

    Lattice QCD study of a five-quark hadronic molecule

    Full text link
    We compute the ground-state energies of a heavy-light K-Lambda like system as a function of the relative distance r of the hadrons. The heavy quarks, one in each hadron, are treated as static. Then, the energies give rise to an adiabatic potential Va(r) which we use to study the structure of the five-quark system. The simulation is based on an anisotropic and asymmetric lattice with Wilson fermions. Energies are extracted from spectral density functions obtained with the maximum entropy method. Our results are meant to give qualitative insight: Using the resulting adiabatic potential in a Schroedinger equation produces bound state wave functions which indicate that the ground state of the five-quark system resembles a hadronic molecule, whereas the first excited state, having a very small rms radius, is probably better described as a five-quark cluster, or a pentaquark. We hypothesize that an all light-quark pentaquark may not exist, but in the heavy-quark sector it might, albeit only as an excited state.Comment: 11 pages, 15 figures, 4 table

    Lower bounds for the approximation with variation-diminishing splines

    Get PDF
    We prove lower bounds for the approximation error of the variation-diminishing Schoenberg operator on the interval [0, 1] in terms of classical moduli of smoothness depending on the degree of the spline basis. For this purpose we use a functional analysis framework in order to characterize the spectrum of the Schoenberg operator and investigate the asymptotic behavior of its iterates

    Diffusion Monte Carlo calculations for the ground states of atoms and ions in neutron star magnetic fields

    Full text link
    The diffusion quantum Monte Carlo method is extended to solve the old theoretical physics problem of many-electron atoms and ions in intense magnetic fields. The feature of our approach is the use of adiabatic approximation wave functions augmented by a Jastrow factor as guiding functions to initialize the quantum Monte Carlo prodecure. We calcula te the ground state energies of atoms and ions with nuclear charges from Z= 2, 3, 4, ..., 26 for magnetic field strengths relevant for neutron stars.Comment: 6 pages, 1 figure, proceedings of the "9th International Conference on Path Integrals - New Trends and Perspectives", Max-Planck-Institut fur Physik komplexer Systeme, Dresden, Germany, September 23 - 28, 2007, to be published as a book by World Scientific, Singapore (2008

    Data analysis of gravitational-wave signals from spinning neutron stars. V. A narrow-band all-sky search

    Full text link
    We present theory and algorithms to perform an all-sky coherent search for periodic signals of gravitational waves in narrow-band data of a detector. Our search is based on a statistic, commonly called the F\mathcal{F}-statistic, derived from the maximum-likelihood principle in Paper I of this series. We briefly review the response of a ground-based detector to the gravitational-wave signal from a rotating neuron star and the derivation of the F\mathcal{F}-statistic. We present several algorithms to calculate efficiently this statistic. In particular our algorithms are such that one can take advantage of the speed of fast Fourier transform (FFT) in calculation of the F\mathcal{F}-statistic. We construct a grid in the parameter space such that the nodes of the grid coincide with the Fourier frequencies. We present interpolation methods that approximately convert the two integrals in the F\mathcal{F}-statistic into Fourier transforms so that the FFT algorithm can be applied in their evaluation. We have implemented our methods and algorithms into computer codes and we present results of the Monte Carlo simulations performed to test these codes.Comment: REVTeX, 20 pages, 8 figure
    corecore