7,569 research outputs found
Phosphorus in land-water systems
Analyses were made to obtain information on distribution of different forms of phosphate in different environmental media, including soils, eroding material, and bottom sediment. Major emphasis was placed on determining several forms of inorganic phosphate in each media. Results show that eroding material can transport significant quantities of phosphates from soils
Planning 3-D collision-free paths using spheres
A scheme for the representation of objects, the Successive Spherical Approximation (SSA), facilitates the rapid planning of collision-free paths in a 3-D, dynamic environment. The hierarchical nature of the SSA allows collision-free paths to be determined efficiently while still providing for the exact representation of dynamic objects. The concept of a freespace cell is introduced to allow human 3-D conceptual knowledge to be used in facilitating satisfying choices for paths. Collisions can be detected at a rate better than 1 second per environment object per path. This speed enables the path planning process to apply a hierarchy of rules to create a heuristically satisfying collision-free path
Black hole solutions in 2+1 dimensions
We give circularly symmetric solutions for null fluid collapse in
2+1-dimensional Einstein gravity with a cosmological constant. The fluid
pressure and energy density are related by . The
long time limit of the solutions are black holes whose horizon structures
depend on the value of . The solution is the
Banados-Teitelboim-Zanelli black hole metric in the long time static limit,
while the solutions give other, `hairy' black hole metrics in this limit.Comment: 8 pages, RevTeX (to appear in Phys. Rev. D) References to Mann and
Ross, and Mann, Chan and Chan adde
Diffusion Enhances Chirality Selection
Diffusion effect on chirality selection in a two-dimensional
reaction-diffusion model is studied by the Monte Carlo simulation. The model
consists of achiral reactants A which turn into either of the chiral products,
R or S, in a solvent of chemically inactive vacancies V. The reaction contains
the nonlinear autocatalysis as well as recycling process, and the chiral
symmetry breaking is monitored by an enantiomeric excess .
Without dilution a strong nonlinear autocatalysis ensures chiral symmetry
breaking. By dilution, the chiral order decreases, and the racemic state
is recovered below the critical concentration . Diffusion effectively
enhances the concentration of chiral species, and decreases as the
diffusion coefficient increases. The relation between and for a
system with a finite fits rather well to an interpolation formula between
the diffusionless(D=0) and homogeneous () limits.Comment: 7 pages, 6 figure
PON1 status does not influence cholinesterase activity in Egyptian agricultural workers exposed to chlorpyrifos.
Animal studies have shown that paraoxonase 1 (PON1) genotype can influence susceptibility to the organophosphorus pesticide chlorpyrifos (CPF). However, Monte Carlo analysis suggests that PON1 genotype may not affect CPF-related toxicity at low exposure conditions in humans. The current study sought to determine the influence of PON1 genotype on the activity of blood cholinesterase as well as the effect of CPF exposure on serum PON1 in workers occupationally exposed to CPF. Saliva, blood and urine were collected from agricultural workers (n=120) from Egypt's Menoufia Governorate to determine PON1 genotype, blood cholinesterase activity, serum PON1 activity towards chlorpyrifos-oxon (CPOase) and paraoxon (POase), and urinary levels of the CPF metabolite 3,5,6-trichloro-2-pyridinol (TCPy). The PON1 55 (P≤0.05) but not the PON1 192 genotype had a significant effect on CPOase activity. However, both the PON1 55 (P≤0.05) and PON1 192 (P≤0.001) genotypes had a significant effect on POase activity. Workers had significantly inhibited AChE and BuChE after CPF application; however, neither CPOase activity nor POase activity was associated with ChE depression when adjusted for CPF exposure (as determined by urinary TCPy levels) and stratified by PON1 genotype. CPOase and POase activity were also generally unaffected by CPF exposure although there were alterations in activity within specific genotype groups. Together, these results suggest that workers retained the capacity to detoxify chlorpyrifos-oxon under the exposure conditions experienced by this study population regardless of PON1 genotype and activity and that effects of CPF exposure on PON1 activity are minimal
The Origin of Primordial Dwarf Stars and Baryonic Dark Matter
I present a scenario for the production of low mass, degenerate dwarfs of
mass via the mechanism of Lenzuni, Chernoff & Salpeter (1992).
Such objects meet the mass limit requirements for halo dark matter from
microlensing surveys while circumventing the chemical evolution constraints on
normal white dwarf stars. I describe methods to observationally constrain this
scenario and suggest that such objects may originate in small clusters formed
from the thermal instability of shocked, heated gas in dark matter haloes, such
as suggested by Fall & Rees (1985) for globular clusters.Comment: TeX, 4 pages plus 2 postscript figures. To appear in Astrophysical
Journal Letter
The Structure of Isothermal, Self-gravitating Gas Spheres for Softened Gravity
A theory for the structure of isothermal, self-gravitating gas spheres in
pressure equilibrium in a softened gravitational field is developed. The one
parameter spline softening proposed by Hernquist & Katz (1989) is used. We show
that the addition of this extra scale parameter implies that the set of
equilibrium solutions constitute a one-parameter family, rather than the one
and only one isothermal sphere solution for Newtonian gravity. We demonstrate
the perhaps somewhat surprising result that for any finite choice of softening
length and temperature, it is possible to deposit an arbitrarily large mass of
gas in pressure equilibrium and with a non-singular density distribution inside
of r_0 for any r_0 > 0. The theoretical predictions of our models are compared
with the properties of the small, massive, quasi-isothermal gas clumps which
typically form in numerical Tree-SPH simulations of 'passive' galaxy formation
of Milky Way sized galaxies. We find reasonable agreement despite the neglect
of rotational support in the models. We comment on whether the hydrodynamical
resolution in our numerical simulation of galaxy formation is sufficient, and
finally we conclude that one should be cautious, when comparing results of
numerical simulations involving gravitational softening and hydrodynamical
smoothing, with reality.Comment: 22 pages Latex + 12 figure
Proportion Regulation in Globally Coupled Nonlinear Systems
As a model of proportion regulation in differentiation process of biological
system, globally coupled activator-inhibitor systems are studied. Formation and
destabilization of one and two cluster state are predicted analytically.
Numerical simulations show that the proportion of units of clusters is chosen
within a finite range and it is selected depend on the initial condition.Comment: 11 pages (revtex format) and 5 figures (PostScript)
Global Nonradial Instabilities of Dynamically Collapsing Gas Spheres
Self-similar solutions provide good descriptions for the gravitational
collapse of spherical clouds or stars when the gas obeys a polytropic equation
of state, (with ). We study the behaviors of
nonradial perturbations in the similarity solutions of Larson, Penston and
Yahil, which describe the evolution of the collapsing cloud prior to core
formation. Our global stability analysis reveals the existence of unstable
bar-modes () when . In particular, for the collapse of
isothermal spheres, which applies to the early stages of star formation, the
density perturbation relative to the background, , increases as ,
where denotes the epoch of core formation, and is the cloud
central density. Thus, the isothermal cloud tends to evolve into an ellipsoidal
shape (prolate bar or oblate disk, depending on initial conditions) as the
collapse proceeds. In the context of Type II supernovae, core collapse is
described by the equation of state, and our analysis
indicates that there is no growing mode (with density perturbation) in the
collapsing core before the proto-neutron star forms, although nonradial
perturbations can grow during the subsequent accretion of the outer core and
envelope onto the neutron star. We also carry out a global stability analysis
for the self-similar expansion-wave solution found by Shu, which describes the
post-collapse accretion (``inside-out'' collapse) of isothermal gas onto a
protostar. We show that this solution is unstable to perturbations of all
's, although the growth rates are unknown.Comment: 28 pages including 7 ps figures; Minor changes in the discussion; To
be published in ApJ (V.540, Sept.10, 2000 issue
Resonance production from jet fragmentation
Short lived resonances are sensitive to the medium properties in heavy-ion
collisions. Heavy hadrons have larger probability to be produced within the
quark gluon plasma phase due to their short formation times. Therefore heavy
mass resonances are more likely to be affected by the medium, and the
identification of early produced resonances from jet fragmentation might be a
viable option to study chirality. The high momentum resonances on the away-side
of a triggered di-jet are likely to be the most modified by the partonic or
early hadronic medium. We will discuss first results of triggered
hadron-resonance correlations in Cu+Cu heavy ion collisions.Comment: Hot Quarks Colorado 2008 Proceedings, 4 pages 5 figure
- …
