327 research outputs found

    Electric Switching of the Charge-Density-Wave and Normal Metallic Phases in Tantalum Disulfide Thin-Film Devices

    Full text link
    We report on switching among three charge-density-wave phases - commensurate, nearly commensurate, incommensurate - and the high-temperature normal metallic phase in thin-film 1T-TaS2 devices induced by application of an in-plane electric field. The electric switching among all phases has been achieved over a wide temperature range, from 77 K to 400 K. The low-frequency electronic noise spectroscopy has been used as an effective tool for monitoring the transitions, particularly the switching from the incommensurate charge-density-wave phase to the normal metal phase. The noise spectral density exhibits sharp increases at the phase transition points, which correspond to the step-like changes in resistivity. Assignment of the phases is consistent with low-field resistivity measurements over the temperature range from 77 K to 600 K. Analysis of the experimental data and calculations of heat dissipation suggest that Joule heating plays a dominant role in the electric-field induced transitions in the tested 1T-TaS2 devices on Si/SiO2 substrates. The possibility of electrical switching among four different phases of 1T-TaS2 is a promising step toward nanoscale device applications. The results also demonstrate the potential of noise spectroscopy for investigating and identifying phase transitions in materials.Comment: 32 pages, 7 figure

    Benefits of Physical Activity during Pregnancy and Postpartum: An Umbrella Review

    Get PDF
    Purpose This study aimed to summarize the evidence from the 2018 Physical Activity Guidelines Advisory Committee Scientific Report, including new evidence from an updated search of the effects of physical activity on maternal health during pregnancy and postpartum. Methods An initial search was undertaken to identify systematic reviews and meta-analyses published between 2006 and 2016. An updated search then identified additional systematic reviews and meta-analyses published between January 2017 and February 2018. The searches were conducted in PubMed®, CINAHL, and Cochrane Library and supplemented through hand searches of reference lists of included articles and reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Results The original and updated searches yielded a total of 76 systematic reviews and meta-analyses. Strong evidence demonstrated that moderate-intensity physical activity reduced the risk of excessive gestational weight gain, gestational diabetes, and symptoms of postpartum depression. Limited evidence suggested an inverse relationship between physical activity and risk of preeclampsia, gestational hypertension, and antenatal anxiety and depressive symptomology. Insufficient evidence was available to determine the effect of physical activity on postpartum weight loss, postpartum anxiety, and affect during both pregnancy and postpartum. For all health outcomes, there was insufficient evidence to determine whether the relationships varied by age, race/ethnicity, socioeconomic status, or prepregnancy weight status. Conclusions The gestational period is an opportunity to promote positive health behaviors that can have both short- and long-term benefits for the mother. Given the low prevalence of physical activity in young women in general, and the high prevalence of obesity and cardiometabolic diseases among the U.S. population, the public health importance of increasing physical activity in women of childbearing age before, during, and after pregnancy is substantial

    The Paradox of Power in CSR: A Case Study on Implementation

    No full text
    Purpose Although current literature assumes positive outcomes for stakeholders resulting from an increase in power associated with CSR, this research suggests that this increase can lead to conflict within organizations, resulting in almost complete inactivity on CSR. Methods A single in-depth case study, focusing on power as an embedded concept. Results Empirical evidence is used to demonstrate how some actors use CSR to improve their own positions within an organization. Resource dependence theory is used to highlight why this may be a more significant concern for CSR. Conclusions Increasing power for CSR has the potential to offer actors associated with it increased personal power, and thus can attract opportunistic actors with little interest in realizing the benefits of CSR for the company and its stakeholders. Thus power can be an impediment to furthering CSR strategy and activities at the individual and organizational level

    A Mathematical model for Astrocytes mediated LTP at Single Hippocampal Synapses

    Full text link
    Many contemporary studies have shown that astrocytes play a significant role in modulating both short and long form of synaptic plasticity. There are very few experimental models which elucidate the role of astrocyte over Long-term Potentiation (LTP). Recently, Perea & Araque (2007) demonstrated a role of astrocytes in induction of LTP at single hippocampal synapses. They suggested a purely pre-synaptic basis for induction of this N-methyl-D- Aspartate (NMDA) Receptor-independent LTP. Also, the mechanisms underlying this pre-synaptic induction were not investigated. Here, in this article, we propose a mathematical model for astrocyte modulated LTP which successfully emulates the experimental findings of Perea & Araque (2007). Our study suggests the role of retrograde messengers, possibly Nitric Oxide (NO), for this pre-synaptically modulated LTP.Comment: 51 pages, 15 figures, Journal of Computational Neuroscience (to appear

    A protein methylation pathway in Chlamydomonas flagella is active during flagellar resorption

    Get PDF
    Author Posting. © American Society for Cell Biology, 2008. This article is posted here by permission of American Society for Cell Biology for personal use, not for redistribution. The definitive version was published in Molecular Biology of the Cell 19 (2008): 4319-4327, doi:10.1091/mbc.E08-05-0470.During intraflagellar transport (IFT), the regulation of motor proteins, the loading and unloading of cargo and the turnover of flagellar proteins all occur at the flagellar tip. To begin an analysis of the protein composition of the flagellar tip, we used difference gel electrophoresis to compare long versus short (i.e., regenerating) flagella. The concentration of tip proteins should be higher relative to that of tubulin (which is constant per unit length of the flagellum) in short compared with long flagella. One protein we have identified is the cobalamin-independent form of methionine synthase (MetE). Antibodies to MetE label flagella in a punctate pattern reminiscent of IFT particle staining, and immunoblot analysis reveals that the amount of MetE in flagella is low in full-length flagella, increased in regenerating flagella, and highest in resorbing flagella. Four methylated proteins have been identified in resorbing flagella, using antibodies specific for asymmetrically dimethylated arginine residues. These proteins are found almost exclusively in the axonemal fraction, and the methylated forms of these proteins are essentially absent in full-length and regenerating flagella. Because most cells resorb cilia/flagella before cell division, these data indicate a link between flagellar protein methylation and progression through the cell cycle.This work was supported by National Institutes of Health Grant DK071720 (R.D.S.) and National Science Foundation Grant MCB 0418877 (R.D.S.)

    Automated Three-Dimensional Detection and Shape Classification of Dendritic Spines from Fluorescence Microscopy Images

    Get PDF
    A fundamental challenge in understanding how dendritic spine morphology controls learning and memory has been quantifying three-dimensional (3D) spine shapes with sufficient precision to distinguish morphologic types, and sufficient throughput for robust statistical analysis. The necessity to analyze large volumetric data sets accurately, efficiently, and in true 3D has been a major bottleneck in deriving reliable relationships between altered neuronal function and changes in spine morphology. We introduce a novel system for automated detection, shape analysis and classification of dendritic spines from laser scanning microscopy (LSM) images that directly addresses these limitations. The system is more accurate, and at least an order of magnitude faster, than existing technologies. By operating fully in 3D the algorithm resolves spines that are undetectable with standard two-dimensional (2D) tools. Adaptive local thresholding, voxel clustering and Rayburst Sampling generate a profile of diameter estimates used to classify spines into morphologic types, while minimizing optical smear and quantization artifacts. The technique opens new horizons on the objective evaluation of spine changes with synaptic plasticity, normal development and aging, and with neurodegenerative disorders that impair cognitive function

    Calmodulin Activation by Calcium Transients in the Postsynaptic Density of Dendritic Spines

    Get PDF
    The entry of calcium into dendritic spines can trigger a sequence of biochemical reactions that begins with the activation of calmodulin (CaM) and ends with long-term changes to synaptic strengths. The degree of activation of CaM can depend on highly local elevations in the concentration of calcium and the duration of transient increases in calcium concentration. Accurate measurement of these local changes in calcium is difficult because the spaces are so small and the numbers of molecules are so low. We have therefore developed a Monte Carlo model of intracellular calcium dynamics within the spine that included calcium binding proteins, calcium transporters and ion channels activated by voltage and glutamate binding. The model reproduced optical recordings using calcium indicator dyes and showed that without the dye the free intracellular calcium concentration transient was much higher than predicted from the fluorescent signal. Excitatory postsynaptic potentials induced large, long-lasting calcium gradients across the postsynaptic density, which activated CaM. When glutamate was released at the synapse 10 ms before an action potential occurred, simulating activity patterns that strengthen hippocampal synapses, the calcium gradient and activation of CaM in the postsynaptic density were much greater than when the order was reversed, a condition that decreases synaptic strengths, suggesting a possible mechanism underlying the induction of long-term changes in synaptic strength. The spatial and temporal mechanisms for selectivity in CaM activation demonstrated here could be used in other signaling pathways

    Molecular interactions of the plasma membrane calcium ATPase 2 at pre- and post-synaptic sites in rat cerebellum.

    Get PDF
    The plasma membrane calcium extrusion mechanism, PMCA (plasma membrane calcium ATPase) isoform 2 is richly expressed in the brain and particularly the cerebellum. Whilst PMCA2 is known to interact with a variety of proteins to participate in important signalling events [Strehler EE, Filoteo AG, Penniston JT, Caride AJ (2007) Plasma-membrane Ca(2+) pumps: structural diversity as the basis for functional versatility. Biochem Soc Trans 35 (Pt 5):919-922], its molecular interactions in brain synapse tissue are not well understood. An initial proteomics screen and a biochemical fractionation approach identified PMCA2 and potential partners at both pre- and post-synaptic sites in synapse-enriched brain tissue from rat. Reciprocal immunoprecipitation and GST pull-down approaches confirmed that PMCA2 interacts with the post-synaptic proteins PSD95 and the NMDA glutamate receptor subunits NR1 and NR2a, via its C-terminal PDZ (PSD95/Dlg/ZO-1) binding domain. Since PSD95 is a well-known partner for the NMDA receptor this raises the exciting possibility that all three interactions occur within the same post-synaptic signalling complex. At the pre-synapse, where PMCA2 was present in the pre-synapse web, reciprocal immunoprecipitation and GST pull-down approaches identified the pre-synaptic membrane protein syntaxin-1A, a member of the SNARE complex, as a potential partner for PMCA2. Both PSD95-PMCA2 and syntaxin-1A-PMCA2 interactions were also detected in the molecular and granule cell layers of rat cerebellar sagittal slices by immunohistochemistry. These specific molecular interactions at cerebellar synapses may allow PMCA2 to closely control local calcium dynamics as part of pre- and post-synaptic signalling complexes

    The proper name as starting point for basic reading skills

    Get PDF
    Does alphabetic-phonetic writing start with the proper name and how does the name affect reading and writing skills? Sixty 4- to 5½-year-old children from middle SES families with Dutch as their first language wrote their proper name and named letters. For each child we created unique sets of words with and without the child’s first letter of the name to test spelling skills and phonemic sensitivity. Name writing correlated with children’s knowledge of the first letter of the name and phonemic sensitivity for the sound of the first letter of the name. Hierarchical regression analysis makes plausible that both knowledge of the first letter’s name and phonemic sensitivity for this letter explain why name writing results in phonetic spelling with the name letter. Practical implications of the findings are discussed
    corecore