43 research outputs found
Fluorescence imaging through dynamic scattering media with speckle-encoded ultrasound-modulated light correlation
Fluorescence imaging is indispensable to biomedical research, and yet it remains challenging to image through dynamic scattering samples. Techniques that combine ultrasound and light as exemplified by ultrasound-assisted wavefront shaping have enabled fluorescence imaging through scattering media. However, the translation of these techniques into in vivo applications has been hindered by the lack of high-speed solutions to counter the fast speckle decorrelation of dynamic tissue. Here, we report an ultrasound-enabled optical imaging method that instead leverages the dynamic nature to perform imaging. The method utilizes the correlation between the dynamic speckle-encoded fluorescence and ultrasound-modulated light signal that originate from the same location within a sample. We image fluorescent targets with an improved resolution of ≤75 µm (versus a resolution of 1.3 mm with direct optical imaging) within a scattering medium with 17 ms decorrelation time. This new imaging modality paves the way for fluorescence imaging in highly scattering tissue in vivo
Histoire d'Égypte de Makrizi, tr. de l'arabe et accompagnée de notes historiques et géographiques,
Extrait de la Revue de l'Orient latin, t.6-11.Mode of access: Internet
Spectrally resolved point-spread-function engineering using a complex medium
Propagation of an ultrashort pulse of light through strongly scattering media generates an intricate spatio-spectral speckle that can be described by means of the multi-spectral transmission matrix (MSTM). In conjunction with a spatial light modulator, the MSTM enables the manipulation of the pulse leaving the medium; in particular focusing it at any desired spatial position and/or time. Here, we demonstrate how to engineer the point-spread-function of the focused beam both spatially and spectrally, from the measured MSTM. It consists of numerically filtering the spatial content at each wavelength of the matrix prior to focusing. We experimentally report on the versatility of the technique through several examples, in particular as an alternative to simultaneous spatial and temporal focusing, with potential applications in multiphoton microscopy.</jats:p
Spectrally resolved point-spread-function engineering using a complex medium
International audiencePropagation of an ultrashort pulse of light through strongly scattering media generates an intricate spatio-spectral speckle that can be described by means of the multi-spectral transmission matrix (MSTM). In conjunction with a spatial light modulator, the MSTM enables the manipulation of the pulse leaving the medium; in particular focusing it at any desired spatial position and/or time. Here, we demonstrate how to engineer the point-spread-function of the focused beam both spatially and spectrally, from the measured MSTM. It consists of numerically filtering the spatial content at each wavelength of the matrix prior to focusing. We experimentally report on the versatility of the technique through several examples, in particular as an alternative to simultaneous spatial and temporal focusing, with potential applications in multiphoton microscopy
Catalogue de la collection de manuscrits orientaux, arabes, persans et turcs
Mode of access: Internet
Spectrally-resolved point-spread-function engineering using a complex medium
Propagation of an ultrashort pulse of light through strongly scattering media generates an intricate spatio-spectral speckle that can be described by means of the multi-spectral transmission matrix (MSTM). In conjunction with a spatial light modulator, the MSTM enables the manipulation of the pulse leaving the medium; in particular focusing it at any desired spatial position and/or time. Here, we demonstrate how to engineer the point-spread-function of the focused beam both spatially and spectrally, from the measured MSTM. It consists in numerically filtering the spatial content at each wavelength of the matrix prior to focusing. We experimentally report on the versatility of the technique through several examples, in particular as an alternative to simultaneous spatial and temporal focusing, with potential applications in multiphoton microscopy
