35 research outputs found

    Fluorescence imaging through dynamic scattering media with speckle-encoded ultrasound-modulated light correlation

    Get PDF
    Fluorescence imaging is indispensable to biomedical research, and yet it remains challenging to image through dynamic scattering samples. Techniques that combine ultrasound and light as exemplified by ultrasound-assisted wavefront shaping have enabled fluorescence imaging through scattering media. However, the translation of these techniques into in vivo applications has been hindered by the lack of high-speed solutions to counter the fast speckle decorrelation of dynamic tissue. Here, we report an ultrasound-enabled optical imaging method that instead leverages the dynamic nature to perform imaging. The method utilizes the correlation between the dynamic speckle-encoded fluorescence and ultrasound-modulated light signal that originate from the same location within a sample. We image fluorescent targets with an improved resolution of ≤75 µm (versus a resolution of 1.3 mm with direct optical imaging) within a scattering medium with 17 ms decorrelation time. This new imaging modality paves the way for fluorescence imaging in highly scattering tissue in vivo

    Effect of the cold-sprayed aluminum coating-substrate interface morphology on bond strength for aircraft repair application

    No full text
    International audienceThis article is dealing with the effects of surface preparation of the substrate on aluminum cold-sprayed coating bond strength. Different sets of AA2024-T3 specimens have been coated with pure Al 1050 feedstock powder, using a conventional cold spray coating technique. The sets were grit-blasted (GB) before coating. The study focuses on substrate surface topography evolution before coating and coating-substrate interface morphology after coating. To study coating adhesion by LASAT® technique for each set, specimens with and without preceding GB treatment were tested in load-controlled conditions. Then, several techniques were used to evaluate the effects of substrate surface treatment on the final coating mechanical properties. Irregularities induced by the GB treatment modify significantly the interface morphology. Results showed that particle anchoring was improved dramatically by the presence of craters. The substrate surface was characterized by numerous anchors. Numerical simulation results exhibited the increasing deformation of particle onto the grit-blasted surface. In addition, results showed a strong relationship between the coating-substrate bond strength on the deposited material and surface preparation
    corecore