31 research outputs found

    Efavirenz Intoxication Due to Slow Hepatic Metabolism

    Get PDF
    We describe a human immunodeficiency virus-positive woman who presented with severe psychosis while she was receiving therapy with efavirenz. Her plasma efavirenz level was excessively high. Genetic investigation showed that she was homozygous for the CYP2B6 G516T allele, resulting in slow hepatic metabolism. After the dosage of efavirenz was lowered, all neuropsychiatric symptoms subside

    Efavirenz intoxication due to slow hepatic metabolism

    Get PDF
    We describe a human immunodeficiency virus-positive woman who presented with severe psychosis while she was receiving therapy with efavirenz. Her plasma efavirenz level was excessively high. Genetic investigation showed that she was homozygous for the CYP2B6 G516T allele, resulting in slow hepatic metabolism. After the dosage of efavirenz was lowered, all neuropsychiatric symptoms subsided

    Cellular viral rebound after cessation of potent antiretroviral therapy predicted by levels of multiply spliced HIV-1 RNA encoding nef

    Get PDF
    To characterize newly arising replication of human immunodeficiency virus (HIV) type 1 in vivo at the cellular level, distinct viral RNA species in peripheral blood mononuclear cells (PBMCs) from HIV-1-infected patients were monitored during 2 weeks of structured treatment interruption (STI). HIV-1 RNA encoding tat/rev and PBMC-associated virions were almost completely depleted during antiretroviral therapy and emerged simultaneously after 2 weeks of STI, thus specifically reflecting productive viral infection at the cellular level. The magnitude of these correlates of reappearing cellular viral replication was predicted by during-therapy levels of nef transcripts in PBMCs. Significant rebound of plasma viremia, representing the progeny of a broader range of anatomical compartments, preceded and predicted productive infection in PBMCs. Thus, cellular viral rebound in PBMCs likely was primed before STI by the expression of nef in HIV-1-infected PBMCs that lacked virion production and was subsequently triggered by the plasma viremia that preceded the recurrence of productively infected PBMCs

    Modeling the influence of APOC3, APOE, and TNF polymorphisms on the risk of antiretroviral therapy-associated lipid disorders.

    Get PDF
    BACKGROUND: Single-nucleotide polymorphisms in genes involved in lipoprotein and adipocyte metabolism may explain why dyslipidemia and lipoatrophy occur in some but not all antiretroviral therapy (ART)-treated individuals. METHODS: We evaluated the contribution of APOC3 -482C-->T, -455T-->C, and 3238C-->G; epsilon 2 and epsilon 4 alleles of APOE; and TNF -238G-->A to dyslipidemia and lipoatrophy by longitudinally modeling >2600 lipid determinations and 2328 lipoatrophy assessments in 329 ART-treated patients during a median follow-up period of 3.4 years. RESULTS: In human immunodeficiency virus (HIV)-infected individuals, the effects of variant alleles of APOE on plasma cholesterol and triglyceride levels and of APOC3 on plasma triglyceride levels were comparable to those reported in the general population. However, when treated with ritonavir, individuals with unfavorable genotypes of APOC3 and [corrected] APOE were at risk of extreme hypertriglyceridemia. They had median plasma triglyceride levels of 7.33 mmol/L, compared with 3.08 mmol/L in the absence of ART. The net effect of the APOE*APOC3*ritonavir interaction was an increase in plasma triglyceride levels of 2.23 mmol/L. No association between TNF -238G-->A and lipoatrophy was observed. CONCLUSIONS: Variant alleles of APOE and APOC3 contribute to an unfavorable lipid profile in patients with HIV. Interactions between genotypes and ART can lead to severe hyperlipidemia. Genetic analysis may identify patients at high risk for severe ritonavir-associated hypertriglyceridemia

    Genomics meets HIV-1

    Get PDF
    Genomics is now a core element in the effort to develop a vaccine against HIV-1. Thanks to unprecedented progress in high-throughput genotyping and sequencing, in knowledge about genetic variation in humans, and in evolutionary genomics, it is finally possible to systematically search the genome for common genetic variants that influence the human response to HIV-1. The identification of such variants would help to determine which aspects of the response to the virus are the most promising targets for intervention. However, a key obstacle to progress remains the scarcity of appropriate human cohorts available for genomic research

    Adaptation of HIV-1 Depends on the Host-Cell Environment

    Get PDF
    Many viruses have the ability to rapidly develop resistance against antiviral drugs and escape from the host immune system. To which extent the host environment affects this adaptive potential of viruses is largely unknown. Here we show that for HIV-1, the host-cell environment is key to the adaptive potential of the virus. We performed a large-scale selection experiment with two HIV-1 strains in two different T-cell lines (MT4 and C8166). Over 110 days of culture, both virus strains adapted rapidly to the MT4 T-cell line. In contrast, when cultured on the C8166 T-cell line, the same strains did not show any increase in fitness. By sequence analyses and infections with viruses expressing either yellow or cyan fluorescent protein, we were able to show that the absence of adaptation was linked to a lower recombination rate in the C8166 T-cell line. Our findings suggest that if we can manipulate the host-cellular factors that mediate viral evolution, we may be able to significantly retard viral adaptability

    Host hindrance to HIV-1 replication in monocytes and macrophages

    Get PDF
    Monocytes and macrophages are targets of HIV-1 infection and play critical roles in multiple aspects of viral pathogenesis. HIV-1 can replicate in blood monocytes, although only a minor proportion of circulating monocytes harbor viral DNA. Resident macrophages in tissues can be infected and function as viral reservoirs. However, their susceptibility to infection, and their capacity to actively replicate the virus, varies greatly depending on the tissue localization and cytokine environment. The susceptibility of monocytes to HIV-1 infection in vitro depends on their differentiation status. Monocytes are refractory to infection and become permissive upon differentiation into macrophages. In addition, the capacity of monocyte-derived macrophages to sustain viral replication varies between individuals. Host determinants regulate HIV-1 replication in monocytes and macrophages, limiting several steps of the viral life-cycle, from viral entry to virus release. Some host factors responsible for HIV-1 restriction are shared with T lymphocytes, but several anti-viral mechanisms are specific to either monocytes or macrophages. Whilst a number of these mechanisms have been identified in monocytes or in monocyte-derived macrophages in vitro, some of them have also been implicated in the regulation of HIV-1 infection in vivo, in particular in the brain and the lung where macrophages are the main cell type infected by HIV-1. This review focuses on cellular factors that have been reported to interfere with HIV-1 infection in monocytes and macrophages, and examines the evidences supporting their role in vivo, highlighting unique aspects of HIV-1 restriction in these two cell types

    Surveillance programs for detection and characterization of emergent pathogens and antimicrobial resistance: results from the Division of Infectious Diseases, UNIFESP

    Full text link

    Virological and immunological characteristics of HIV treatment failure.

    No full text
    BACKGROUND: Resistance to antiretroviral treatment is prevalent. There is limited knowledge of the determinants of disease evolution in subjects infected with multidrug-resistant HIV (MDR-HIV). METHODS: Infectivity, replication, chemokine receptor usage, and env, gag, protease and reverse transcriptase sequence analysis was performed for MDR-HIV isolates from 14 HIV-infected individuals and compared to wild-type HIV isolates from individuals naive to antiretroviral treatment. Expression of CD45RO/RA, Ki67 and interferon-gamma and CD4 proliferative response to various antigens was determined for individuals infected with MDR-HIV and compared to that in individuals with optimal suppression of viral replication. RESULTS: Infectivity and replication are diminished for various MDR-HIV isolates, usually in the context of an increase in CD4 and CD4+CD45RA+ T-cell counts. However, a number of MDR-HIV isolates are associated with high in vivo viraemia and pronounced immunosuppression, and display in vitro levels of infectivity and replication comparable to those of wild-type strains. No specific genetic sequence or chemokine receptor usage predicted the fitness of an MDR isolate. CONCLUSIONS: Despite the biological diversity of resistant viruses and the range of host responses observed, our descriptive analysis indicates that viral factors play a role in determining the degree of immune damage observed in the context of MDR-HIV infection
    corecore