79 research outputs found

    Hadron-nucleon Total Cross Section Fluctuations from Hadron-nucleus Total Cross Sections

    Get PDF
    The extent to which information about fluctuations in hadron-nucleon total cross sections in the frozen approximation can be extracted from very high energy hadron-nucleus total cross section measurements for a range of heavy nuclei is discussed. The corrections to the predictions of Glauber theory due to these fluctuations are calculated for several models for the distribution functions, and differences of the order of 50 mb are found for heavy nuclei. The generating function for the moments of the hadron-nucleon cross section distributions can be approximately determined from the derivatives of the hadron-nucleus total cross sections with respect to the nuclear geometric cross section. The argument of the generating function, however, it limited to the maximum value of a dimensionless thickness function obtained at zero impact parameter for the heaviest nuclear targets: about 1.8 for pions and 3.0 for nucleons.Comment: 14 pages, revtex 3.0, 4 figures available upon reques

    Correlations and Fluctuations in High-Energy Nuclear Collisions

    Get PDF
    Nucleon correlations in the target and projectile nuclei are shown to reduce significantly the fluctuations in multiple nucleon-nucleon collisions, total multiplicity and transverse energy in relativistic heavy-ion collisions, in particular for heavy projectile and target. The interplay between cross-section fluctuations, from color transparency and opacity, and nuclear correlations is calculated and found to be able to account for large fluctuations in transverse energy spectra. Numerical implementation of correlations and cross-section fluctuations in Monte-Carlo codes is discussed.Comment: 30 pages, in Revtex, plus 4 figures. Figures and preprint can be obtained by mailing address to: [email protected]

    Color Screening and the Suppression of the Charmonium State Yield in Nuclear Reactions

    Full text link
    We discuss the new data for the production of the ψâ€Č\psi' meson in pA collisions at 450 GeV at CERN-SPS (of the NA50-collaboration) [1]. We extract from the CERN data σ(ψâ€ČN)≈8\sigma(\psi' N)\approx 8 mb under the assumption that the ψâ€Č\psi' is produced as a result of the space-time evolution of a point-like ccˉc\bar c pair which expands with time to the full size of the charmonium state. In the analysis we assume the existence of a relationship between the distribution of color in a hadron and the cross section of its interaction with a nucleon. However, our result is rather sensitive to the pattern of the expansion of the wave packet and significantly larger values of σ(ψâ€ČN)\sigma(\psi' N) are not ruled out by the data. We show that recent CERN data confirm the suggestion of [2] that color fluctuations of the strengths in charmonium-nucleon interaction are the major source of suppression of the J/ψJ/\psi yield as observed at CERN in both pA and AA collisions.Comment: 10 pages, 5 figures (one with color

    Electroproduction of Charmonia off Nuclei

    Get PDF
    In a recent publication we have calculated elastic charmonium production in ep collisions employing realistic charmonia wave functions and dipole cross sections and have found good agreement with the data in a wide range of s and Q^2. Using the ingredients from those calculations we calculate exclusive electroproduction of charmonia off nuclei. Here new effects become important, (i) color filtering of the c-cbar pair on its trajectory through nuclear matter, (ii) dependence on the finite lifetime of the c-cbar fluctuation (coherence length) and (iii) gluon shadowing in a nucleus compared to the one in a nucleon. Total coherent and incoherent cross sections for C, Cu and Pb as functions of s and Q^2 are presented together with some differential cross sections. The results can be tested with future electron-nucleus colliders or in peripheral collisions of ultrarelativistic heavy ions.Comment: 21 pages of Latex including 14 figures; few misprints are fixe

    Bose-Einstein Correlations of Pion Wavepackets

    Get PDF
    A wavepacket model for a system of free pions, which takes into account the full permutation symmetry of the wavefunction and which is suitable for any phase space parametrization is developed. The properties of the resulting mixed ensembles and the two-particle correlation function are discussed. A physical interpretation of the chaoticity lambda as localizat of the pions in the source is presented. Two techniques to generate test-particles, which satisfy the probability densities of the wavepacket state, are studied: 1. A Monte Carlo procedure in momentum space based on the standard Metropolis technique. 2. A molecular dynamic procedure using Bohm's quantum theory of motion. In order to reduce the numerical complexity, the separation of the wavefunction into momentum space clusters is discussed. In this context th influence of an unauthorized factorization of the state, i. e. the omissio of interference terms, is investigated. It is shown that the correlation radius remains almost uneffected, but the chaoticity parameter decreases substantially. A similar effect is observed in systems with high multiplic where the omission of higher order corrections in the analysis of two-part correlations causes a reduction of the chaoticity and the radius. The approximative treatment of the Coulomb interaction between pions and source is investigated. The results suggest that Coulomb effects on the co radii are not symmetric for pion pairs of different charges. For negative the radius, integrated over the whole momentum spectrum, increases substan while for positive pions the radius remains almost unchanged.Comment: 15 pages, 8 figures, 0.8 Mb, uses ljour2-macro, Submitted to Z. Phys. A (1997

    Transition to resonance-rich matter in heavy ion collisions at RHIC energies

    Get PDF
    The equilibration of hot and dense nuclear matter produced in the central region in central Au+Au collisions at s=200\sqrt{s}=200 AGeV is studied within the microscopic transport model UrQMD. The pressure here becomes isotropic at t≈5t \approx 5 fm/c. Within the next 15 fm/c the expansion of the matter proceeds almost isentropically with the entropy per baryon ratio S/A≈150S/A \approx 150. During this period the equation of state in the (P,Ï”)(P,\epsilon)-plane has a very simple form, P=0.15Ï”P=0.15 \epsilon. Comparison with the statistical model (SM) of an ideal hadron gas reveals that the time of ≈20\approx 20 fm/cc may be too short to attain the fully equilibrated state. Particularly, the fractions of resonances are overpopulated in contrast to the SM values. The creation of such a long-lived resonance-rich state slows down the relaxation to chemical equilibrium and can be detected experimentally.Comment: Talk at the conference Strangeness'2000, to be published in J. of Phys.

    J/\Psi production, χ\chi polarization and Color Fluctuations

    Full text link
    The hard contributions to the heavy quarkonium-nucleon cross sections are calculated based on the QCD factorization theorem and the nonrelativistic quarkonium model. We evaluate the nonperturbative part of these cross sections which dominates at sNN≈20\sqrt{s_{NN}}\approx 20 GeV at the Cern Super Proton Synchrotron (SPS) and becomes a correction at sNN≈6\sqrt{s_{NN}}\approx 6 TeV at the CERN Large Hadron Collider (LHC). \J production at the CERN SPS is well described by hard QCD, when the larger absorption cross sections of the χ\chi states predicted by QCD are taken into account. We predict an AA-dependent polarization of the χ\chi states. The expansion of small wave packets is discussed.Comment: 13 pages REVTEX, 1 table, 2 PostScript, corrected some typo

    Event Anisotropy in High Energy Nucleus-Nucleus Collisions

    Full text link
    The predictions of event anisotropy parameters from transport model RQMD are compared with the recent experimental measurements for 158AA GeV Pb+Pb collisions. Using the same model, we study the time evolution of event anisotropy at 2AA GeV and 158AA GeV for several colliding systems. For the first time, both momentum and configuration space information are studied using the Fourier analysis of the azimuthal angular distribution. We find that, in the model, the initial geometry of the collision plays a dominant role in determining the anisotropy parameters.Comment: 18 pages, 7 figures, 2 table

    Interaction of small size wave packet with hadron target

    Get PDF
    We calculate in QCD the cross section for the scattering of an energetic small-size wave packet off a hadron target. We use our results to study the small-σ\sigma behaviour of Pπ(σ)P_{\pi}(\sigma), the distribution over cross section for the pion, in the leading αs\alpha_{s}-order.Comment: Revised version of the report CEBAF-TH-96-0

    Evidence for Color Fluctuations in Hadrons from Coherent Nuclear Diffraction}

    Full text link
    A QCD-based treatment of projectile size fluctuations is used to compute inelastic diffractive cross sections σdiff\sigma_{diff} for coherent hadron-nuclear processes. We find that fluctuations near the average size give the major contribution to the cross section with ≀few% \le few \% contribution from small size configurations. The computed values of σdiff\sigma_{diff} are consistent with the limited available data. The importance of coherent diffraction studies for a wide range of projectiles for high energy Fermilab fixed target experiments is emphasized. The implications of these significant color fluctuations for relativistic heavy ion collisions are discussed.Comment: Report number DOE/ER 40427-13-N93 11 pages, 3 figures available from author Mille
    • 

    corecore