48 research outputs found

    Exercise in type 2 diabetes: to resist or to endure?

    Get PDF
    There is now evidence that a single bout of endurance (aerobic) or resistance exercise reduces 24 h post-exercise subcutaneous glucose profiles to the same extent in insulin-resistant humans with or without type 2 diabetes. However, it remains to be determined which group would benefit most from specific exercise protocols, particularly with regard to long-term glycaemic control. Acute aerobic exercise first accelerates translocation of myocellular glucose transporters via AMP-activated protein kinase, calcium release and mitogen-activated protein kinase, but also improves insulin-dependent glucose transport/phosphorylation via distal components of insulin signalling (phosphoinositide-dependent kinase 1, TBC1 domain family, members 1 and 4, Rac1, protein kinase C). Post-exercise effects involve peroxisome-proliferator activated receptor-γ coactivator 1α and lead to ATP synthesis, which may be modulated by variants in genes such as NDUFB6. While mechanisms of acute resistance-type exercise are less clear, chronic resistance training activates the mammalian target of rapamycin/serine kinase 6 pathway, ultimately increasing protein synthesis and muscle mass. Over the long term, adherence to rather than differences in metabolic variables between specific modes of regular exercise might ultimately determine their efficacy. Taken together, studies are now needed to address the variability of individual responses to long-term resistance and endurance training in real life

    Dynamics of notch pathway expression during mouse testis post-natal development and along the spermatogenic cycle

    Get PDF
    Articles in International JournalsThe transcription and expression patterns of Notch pathway components (Notch 1–3, Delta1 and 4, Jagged1) and effectors (Hes1, Hes2, Hes5 and Nrarp) were evaluated (through RT-PCR and IHC) in the mouse testis at key moments of post-natal development, and along the adult spermatogenic cycle. Notch pathway components and effectors are transcribed in the testis and expressed in germ, Sertoli and Leydig cells, and each Notch component shows a specific cell-type and timewindow expression pattern. This expression at key testis developmental events prompt for a role of Notch signaling in prepubertal spermatogonia quiescence, onset of spermatogenesis, and regulation of the spermatogenic cycle

    ATP synthase: from single molecule to human bioenergetics

    Get PDF
    ATP synthase (FoF1) consists of an ATP-driven motor (F1) and a H+-driven motor (Fo), which rotate in opposite directions. FoF1 reconstituted into a lipid membrane is capable of ATP synthesis driven by H+ flux. As the basic structures of F1 (α3β3γδε) and Fo (ab2c10) are ubiquitous, stable thermophilic FoF1 (TFoF1) has been used to elucidate molecular mechanisms, while human F1Fo (HF1Fo) has been used to study biomedical significance. Among F1s, only thermophilic F1 (TF1) can be analyzed simultaneously by reconstitution, crystallography, mutagenesis and nanotechnology for torque-driven ATP synthesis using elastic coupling mechanisms. In contrast to the single operon of TFoF1, HFoF1 is encoded by both nuclear DNA with introns and mitochondrial DNA. The regulatory mechanism, tissue specificity and physiopathology of HFoF1 were elucidated by proteomics, RNA interference, cytoplasts and transgenic mice. The ATP synthesized daily by HFoF1 is in the order of tens of kilograms, and is primarily controlled by the brain in response to fluctuations in activity

    Cohort profile: the German Diabetes Study (GDS)

    Full text link

    Exercise and diabetes: relevance and causes for response variability

    Get PDF
    corecore