16 research outputs found

    Evolutionary loss of inflammasomes in carnivores to facilitate carriage of zoonotic infections

    Full text link
    SummaryZoonotic infections, such as COVID-19, reside in animal hosts before jumping species to humans. The Carnivora, like mink, carry many zoonoses yet how diversity in host immune genes across species impact upon pathogen carriage are poorly understood. Here we describe a progressive evolutionary downregulation of pathogen sensing inflammasome pathways in Carnivora. This includes the loss of nucleotide-oligomerisation domain leucine rich repeat receptors (NLRs), acquisition of a unique caspase−1/−4 effector fusion protein that processes gasdermin D pore formation without inducing lytic cell death and the formation of an NLRP3-caspase-8 containing inflammasome that inefficiently processes interleukin-1β (IL-1β). Inflammasomes regulate gut immunity, but the carnivorous diet is antimicrobial suggesting a tolerance to the loss of these immune pathways. The consequences of systemic inflammasome downregulation, however, can reduce the host sensing of specific pathogens such that they can reside undetected in the Carnivora.</jats:p

    The Proteasome as a Drug Target in the Metazoan Pathogen, <i>Schistosoma mansoni</i>

    No full text
    Proteases are fundamental to successful parasitism, including that of the schistosome flatworm parasite, which causes the disease schistosomiasis in 200 million people worldwide. The proteasome is receiving attention as a potential drug target for treatment of a variety of infectious parasitic diseases, but it has been understudied in the schistosome. Adult Schistosoma mansoni were incubated with 1 μM concentrations of the proteasome inhibitors bortezomib, carfilzomib, and MG132. After 24 h, bortezomib and carfilzomib decreased worm motility by more than 85% and endogenous proteasome activity by >75%, and after 72 h, they increased caspase activity by >4.5-fold. The association between the engagement of the proteasome target and the phenotypic and biochemical effects recorded encouraged the chromatographic enrichment of the S. mansoni proteasome (Sm20S). Activity assays with fluorogenic proteasome substrates revealed that Sm20S contains caspase-type (β1), trypsin-type (β2), and chymotrypsin-type (β5) activities. Sm20S was screened with 11 peptide epoxyketone inhibitors derived from the marine natural product carmaphycin B. Analogue 17 was 27.4-fold less cytotoxic to HepG2 cells than carmaphycin B and showed equal potency for the β5 subunits of Sm20S, human constitutive proteasome, and human immunoproteasome. However, this analogue was 13.2-fold more potent at targeting Sm20S β2 than it was at targeting the equivalent subunits of the human enzymes. Furthermore, 1 μM 17 decreased both worm motility and endogenous Sm20S activity by more than 90% after 24 h. We provide direct evidence of the proteasome’s importance to schistosome viability and identify a lead for which future studies will aim to improve the potency, selectivity, and safety

    The Proteasome as a Drug Target in the Metazoan Pathogen, <i>Schistosoma mansoni</i>

    No full text
    Proteases are fundamental to successful parasitism, including that of the schistosome flatworm parasite, which causes the disease schistosomiasis in 200 million people worldwide. The proteasome is receiving attention as a potential drug target for treatment of a variety of infectious parasitic diseases, but it has been understudied in the schistosome. Adult Schistosoma mansoni were incubated with 1 μM concentrations of the proteasome inhibitors bortezomib, carfilzomib, and MG132. After 24 h, bortezomib and carfilzomib decreased worm motility by more than 85% and endogenous proteasome activity by >75%, and after 72 h, they increased caspase activity by >4.5-fold. The association between the engagement of the proteasome target and the phenotypic and biochemical effects recorded encouraged the chromatographic enrichment of the S. mansoni proteasome (Sm20S). Activity assays with fluorogenic proteasome substrates revealed that Sm20S contains caspase-type (β1), trypsin-type (β2), and chymotrypsin-type (β5) activities. Sm20S was screened with 11 peptide epoxyketone inhibitors derived from the marine natural product carmaphycin B. Analogue 17 was 27.4-fold less cytotoxic to HepG2 cells than carmaphycin B and showed equal potency for the β5 subunits of Sm20S, human constitutive proteasome, and human immunoproteasome. However, this analogue was 13.2-fold more potent at targeting Sm20S β2 than it was at targeting the equivalent subunits of the human enzymes. Furthermore, 1 μM 17 decreased both worm motility and endogenous Sm20S activity by more than 90% after 24 h. We provide direct evidence of the proteasome’s importance to schistosome viability and identify a lead for which future studies will aim to improve the potency, selectivity, and safety

    The Proteasome as a Drug Target in the Metazoan Pathogen, <i>Schistosoma mansoni</i>

    No full text
    Proteases are fundamental to successful parasitism, including that of the schistosome flatworm parasite, which causes the disease schistosomiasis in 200 million people worldwide. The proteasome is receiving attention as a potential drug target for treatment of a variety of infectious parasitic diseases, but it has been understudied in the schistosome. Adult Schistosoma mansoni were incubated with 1 μM concentrations of the proteasome inhibitors bortezomib, carfilzomib, and MG132. After 24 h, bortezomib and carfilzomib decreased worm motility by more than 85% and endogenous proteasome activity by >75%, and after 72 h, they increased caspase activity by >4.5-fold. The association between the engagement of the proteasome target and the phenotypic and biochemical effects recorded encouraged the chromatographic enrichment of the S. mansoni proteasome (Sm20S). Activity assays with fluorogenic proteasome substrates revealed that Sm20S contains caspase-type (β1), trypsin-type (β2), and chymotrypsin-type (β5) activities. Sm20S was screened with 11 peptide epoxyketone inhibitors derived from the marine natural product carmaphycin B. Analogue 17 was 27.4-fold less cytotoxic to HepG2 cells than carmaphycin B and showed equal potency for the β5 subunits of Sm20S, human constitutive proteasome, and human immunoproteasome. However, this analogue was 13.2-fold more potent at targeting Sm20S β2 than it was at targeting the equivalent subunits of the human enzymes. Furthermore, 1 μM 17 decreased both worm motility and endogenous Sm20S activity by more than 90% after 24 h. We provide direct evidence of the proteasome’s importance to schistosome viability and identify a lead for which future studies will aim to improve the potency, selectivity, and safety

    The Proteasome as a Drug Target in the Metazoan Pathogen, <i>Schistosoma mansoni</i>

    No full text
    Proteases are fundamental to successful parasitism, including that of the schistosome flatworm parasite, which causes the disease schistosomiasis in 200 million people worldwide. The proteasome is receiving attention as a potential drug target for treatment of a variety of infectious parasitic diseases, but it has been understudied in the schistosome. Adult Schistosoma mansoni were incubated with 1 μM concentrations of the proteasome inhibitors bortezomib, carfilzomib, and MG132. After 24 h, bortezomib and carfilzomib decreased worm motility by more than 85% and endogenous proteasome activity by >75%, and after 72 h, they increased caspase activity by >4.5-fold. The association between the engagement of the proteasome target and the phenotypic and biochemical effects recorded encouraged the chromatographic enrichment of the S. mansoni proteasome (Sm20S). Activity assays with fluorogenic proteasome substrates revealed that Sm20S contains caspase-type (β1), trypsin-type (β2), and chymotrypsin-type (β5) activities. Sm20S was screened with 11 peptide epoxyketone inhibitors derived from the marine natural product carmaphycin B. Analogue 17 was 27.4-fold less cytotoxic to HepG2 cells than carmaphycin B and showed equal potency for the β5 subunits of Sm20S, human constitutive proteasome, and human immunoproteasome. However, this analogue was 13.2-fold more potent at targeting Sm20S β2 than it was at targeting the equivalent subunits of the human enzymes. Furthermore, 1 μM 17 decreased both worm motility and endogenous Sm20S activity by more than 90% after 24 h. We provide direct evidence of the proteasome’s importance to schistosome viability and identify a lead for which future studies will aim to improve the potency, selectivity, and safety

    The Proteasome as a Drug Target in the Metazoan Pathogen, <i>Schistosoma mansoni</i>

    No full text
    Proteases are fundamental to successful parasitism, including that of the schistosome flatworm parasite, which causes the disease schistosomiasis in 200 million people worldwide. The proteasome is receiving attention as a potential drug target for treatment of a variety of infectious parasitic diseases, but it has been understudied in the schistosome. Adult Schistosoma mansoni were incubated with 1 μM concentrations of the proteasome inhibitors bortezomib, carfilzomib, and MG132. After 24 h, bortezomib and carfilzomib decreased worm motility by more than 85% and endogenous proteasome activity by >75%, and after 72 h, they increased caspase activity by >4.5-fold. The association between the engagement of the proteasome target and the phenotypic and biochemical effects recorded encouraged the chromatographic enrichment of the S. mansoni proteasome (Sm20S). Activity assays with fluorogenic proteasome substrates revealed that Sm20S contains caspase-type (β1), trypsin-type (β2), and chymotrypsin-type (β5) activities. Sm20S was screened with 11 peptide epoxyketone inhibitors derived from the marine natural product carmaphycin B. Analogue 17 was 27.4-fold less cytotoxic to HepG2 cells than carmaphycin B and showed equal potency for the β5 subunits of Sm20S, human constitutive proteasome, and human immunoproteasome. However, this analogue was 13.2-fold more potent at targeting Sm20S β2 than it was at targeting the equivalent subunits of the human enzymes. Furthermore, 1 μM 17 decreased both worm motility and endogenous Sm20S activity by more than 90% after 24 h. We provide direct evidence of the proteasome’s importance to schistosome viability and identify a lead for which future studies will aim to improve the potency, selectivity, and safety
    corecore