20 research outputs found
Response of Soil Respiration to Soil Temperature and Moisture in a 50-Year-Old Oriental Arborvitae Plantation in China
China possesses large areas of plantation forests which take up great quantities of carbon. However, studies on soil respiration in these plantation forests are rather scarce and their soil carbon flux remains an uncertainty. In this study, we used an automatic chamber system to measure soil surface flux of a 50-year-old mature plantation of Platycladus orientalis at Jiufeng Mountain, Beijing, China. Mean daily soil respiration rates (Rs) ranged from 0.09 to 4.87 ”mol CO2 mâ2sâ1, with the highest values observed in August and the lowest in the winter months. A logistic model gave the best fit to the relationship between hourly Rs and soil temperature (Ts), explaining 82% of the variation in Rs over the annual cycle. The annual total of soil respiration estimated from the logistic model was 645±5 g C mâ2 yearâ1. The performance of the logistic model was poorest during periods of high soil temperature or low soil volumetric water content (VWC), which limits the model's ability to predict the seasonal dynamics of Rs. The logistic model will potentially overestimate Rs at high Ts and low VWC. Seasonally, Rs increased significantly and linearly with increasing VWC in May and July, in which VWC was low. In the months from August to November, inclusive, in which VWC was not limiting, Rs showed a positively exponential relationship with Ts. The seasonal sensitivity of soil respiration to Ts (Q10) ranged from 0.76 in May to 4.38 in October. It was suggested that soil temperature was the main determinant of soil respiration when soil water was not limiting
Carbon fluxes to the soil in a mature temperate forest assessed by C-13 isotope tracing
Photosynthetic carbon uptake and respiratory C release from soil are major components of the global carbon balance. The use of C-13 depleted CO2 (delta(13)C = -30 mature deciduous forest permitted us to trace the carbon transfer from tree crowns to the rhizosphere of 100-120 years old trees. During the first season of CO2 enrichment the CO2 released from soil originated substantially from concurrent assimilation. The small contribution of recent carbon in fine roots suggests a much slower fine root turnover than is often assumed. C-13 abundance in soil air correlated best with temperature data taken from 4 to 10 days before air sampling time and is thus rapidly available for root and rhizosphere respiration. The spatial variability of delta(13)C in soil air showed relationships to above ground tree types such as conifers versus broad-leaved trees. Considering the complexity and strong overlap of roots from different individuals in a forest, this finding opens an exciting new possibility of associating respiration with different species. What might be seen as signal noise does in fact contain valuable information on the spatial heterogeneity of tree-soil interaction
Application of nitrogen fertilizer to a boreal pine forest has a negative impact on the respiration of ectomycorrhizal hyphae
Aims: There is evidence that increased N inputs to boreal forests, via atmospheric deposition or intentional fertilization, may impact negatively on ectomycorrhizal (ECM) fungi leading to a reduced flux of plant- derived carbon (C) back to the atmosphere via ECM. Our aim was to investigate the impact of N fertilization of a Pinus sylvestris (L.) forest stand on the return of recently photoassimilated C via the ECM component of soil respiration. Methods: We used an in situ, large-scale, 13C-CO2 isotopic pulse labelling approach and monitored the 13C label return using soil gas efflux chambersplaced over three different types of soil collar to distinguish between heterotrophic (RH), autotrophic (RA; partitioned further into contributions from ECM hyphae and total RA) and total (RS) soil respiration. Results: The impact of N fertilization was to significantly reduce RA, particularly respiration via extramatrical ECM hyphae. ECM hyphal flux in control plots showed substantial spatial variability, resulting in mean flux estimates exceeding estimates of total RA, while ECM contributions to RA in N treated plots were estimated at around 30%. Conclusion: Significant impacts on soil C cycling may be caused by reduced plant C allocation to ECM fungi in response to increased N inputs to boreal forests; ecosystem models so far lack this detail